my_digital_garden/4a1s/DAA/PL - Project.md

1 KiB

Modeling/predicting techniques per class:

  1. Decision Trees
  2. Linear Regression + Logistical Regression (numerical data)
  3. Support Vector Machine (categorical data)
  4. K-means clustering and K-medoids clustering (numerical data)

| testsize | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0.05 | 0.025| 0.01| | -------- | ----- | ----- | ----- | ----- | ----- | ----- | --- | ----- | --| --| | score | 0.255 | 0.308 | 0.357 | 0.410 | 0.459 | 0.515 | 0.556 | 0.621| 0.658 | 0.677 | 0.692 | | | | | | | | | |

Exemple:

acc prec rec f1
non 0.65 0.7 0.72 0.71
grid 0.69 0.73 0.77 0.75
rand 0.64 0.69 0.71 0.70

Classifier:

acc prec rec f1