1 KiB
1 KiB
Modeling/predicting techniques per class:
- Decision Trees
- Linear Regression + Logistical Regression (numerical data)
- Support Vector Machine (categorical data)
- K-means clustering and K-medoids clustering (numerical data)
| testsize | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0.05 | 0.025| 0.01| | -------- | ----- | ----- | ----- | ----- | ----- | ----- | --- | ----- | --| --| | score | 0.255 | 0.308 | 0.357 | 0.410 | 0.459 | 0.515 | 0.556 | 0.621| 0.658 | 0.677 | 0.692 | | | | | | | | | |
Exemple:
acc | prec | rec | f1 | |
---|---|---|---|---|
non | 0.65 | 0.7 | 0.72 | 0.71 |
grid | 0.69 | 0.73 | 0.77 | 0.75 |
rand | 0.64 | 0.69 | 0.71 | 0.70 |
Classifier:
acc | prec | rec | f1 | |
---|---|---|---|---|