## Modeling/predicting techniques per class: 2. Decision Trees 3. 4. Linear Regression + Logistical Regression (numerical data) 5. 6. Support Vector Machine (categorical data) 7. K-means clustering and K-medoids clustering (numerical data) | testsize | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0.05 | 0.025| 0.01| | -------- | ----- | ----- | ----- | ----- | ----- | ----- | --- | ----- | --| --| | score | 0.255 | 0.308 | 0.357 | 0.410 | 0.459 | 0.515 | 0.556 | 0.621| 0.658 | 0.677 | 0.692 | | | | | | | | | | Exemple: | | acc | prec | rec | f1 | | ---- | ---- | ---- | ---- | ---- | | non | 0.65 | 0.7 | 0.72 | 0.71 | | grid | 0.69 | 0.73 | 0.77 | 0.75 | | rand | 0.64 | 0.69 | 0.71 | 0.70 | | | | | | | Classifier: | | acc | prec | rec | f1 | | --- | --- | ---- | --- | --- | | | | | | | | | | | | | | | | | | | | | | | | |