76 lines
No EOL
2.5 KiB
Markdown
76 lines
No EOL
2.5 KiB
Markdown
21 Setembro 2023 - #DAA
|
|
|
|
- ## Types of Data
|
|
|
|
-Numerical
|
|
- Discrete Data ({1,2,3,...})
|
|
- Continuous Data (\[1, +$\infty$])
|
|
- *Categorical* (binary, languages, ...)
|
|
- **Ordinal** (ratings of 1 to 5)
|
|
|
|
*not-scaled
|
|
**scaled
|
|
|
|
#+BEGIN_EXAMPLE - Qual o tipo de dado que representa a quantidade de gasóleo?
|
|
Numérico: continuous data
|
|
#+END_EXAMPLE
|
|
|
|
>[!example]- Qual o tipo de dado que representa a quantidade de gasóleo?
|
|
>Numérico: continuous data
|
|
|
|
>[!example]- Qual o tipo de dado que representa a nacionalidade?
|
|
>Categórico
|
|
|
|
>[!example]- Qual o tipo de dado que representa a idade?
|
|
>Numérico: discreto
|
|
- ## Mean, Median & Mode
|
|
- #+BEGIN_TIP
|
|
A mean in math is the average of a data set, found by adding all numbers together and then dividing the sum of the numbers by the number of numbers
|
|
#+END_TIP
|
|
- >[!hint]+
|
|
>A **mean** in math is the average of a data set, found by adding all numbers together and then dividing the sum of the numbers by the number of numbers.
|
|
- ## Standard Deviation & Variance
|
|
- ## Probability Density functions
|
|
- ## Percentiles
|
|
|
|
There are 3 important percentiles:
|
|
- 50% - median
|
|
- 25% - 1st percentile
|
|
- 75% - 3rd percentile
|
|
|
|
>[!note]+
|
|
>These 3 percentiles allow the creation of box plot graphs. These specific graphs allow the discovery and presentation of outliers.
|
|
- ## Covariance & Correlation
|
|
|
|
>[!hint]+
|
|
>**Covariance** measures the direction of a relationship between two variables, while **correlation** measures the strength of that relationship.
|
|
|
|
Covariance is hard to interpret, thus correlation is used instead.
|
|
In a dataset, correlations >0.5 are considerable.
|
|
|
|
>[!caution] Correlation does not mean causation!
|
|
- ## Practical session of the class: miniconda
|
|
IDEs: PyCharm, VS Code, (Jupyter - not recommended)
|
|
|
|
Depois de instalar o miniconda, correr os seguintes comandos:
|
|
- conda create --name daaEnv python=3.10
|
|
- conda activate daaEnv
|
|
- python --version
|
|
- conda install pandas
|
|
- conda install xlrd
|
|
- conda install xlwt
|
|
- conda install matplotlib
|
|
- conda install seaborn
|
|
- conda install scikit-learn
|
|
- conda install jupyterlab
|
|
- conda list
|
|
- ## Resource links
|
|
- https://en.wikipedia.org/wiki/Average
|
|
- https://en.wikipedia.org/wiki/Median
|
|
- https://en.wikipedia.org/wiki/Mode_(statistics)
|
|
- https://en.wikipedia.org/wiki/Standard_deviation
|
|
- https://en.wikipedia.org/wiki/Variance
|
|
- https://en.wikipedia.org/wiki/Probability_density_function
|
|
- https://en.wikipedia.org/wiki/Percentile
|
|
- https://en.wikipedia.org/wiki/Covariance
|
|
- https://en.wikipedia.org/wiki/Correlation |