2.1 KiB
dg-publish |
---|
true |
4 de Outubro 2023 - #CP
Ex. 2
a) Limitações vetoriais
A -> consecutive elements in a row -> consecutive access in the vector C -> same element B -> consecutive elements in a collumn
Não vai ser vetorizável.
b) Enable vectorization
result of change cycles to i, k , j : A -> same element C -> consecutive elements in a row -> consecutive access in the vector B -> consecutive elements in a row -> consecutive access in the vector
i k j 0 0 1
Vai ser vetorizável.
128b 8B -> 64b 2 elements
With vectorization: ! Estimated: ( n^3 / 2 )* 8
c)Measure and analyze results
N | Version | Time | CPI | #I |
---|---|---|---|---|
512 | base_v() | 0.492484818 | 0.91 | 1113554887 |
512 | vect() | 0.081604350 | 2.88 | 578275097 |
[!note]- Commands run module load gcc/9.3.0 gcc -O2 -ftree-vectorize -msse4 mmult.c srun --partition=cpar perf stat -e cycles,instructions ./a.out
d) Vectorization fine-tuning
Ganhos de 4 vezes mais.
Ex. 3
a) Peak Performance
2 operações em FP 4 elementos de cada vez em cada ciclo 2.5 GHz -> 2.5 billion cycles per second
conclusion: 20 GFlop/s
[!note]- Redoing the math AVX -> 256b -> 4 doubles machine is superscalar with 2 FOP units 4x2= 8 double-perations
freq = 2.5 GHz 8x2.5= 20 GFlop/s ^ cpu limitiation
b)
peak with vectorization: continuous 20 GFlop/s peak without vectorization: continuous 5 GFlop/s memory bandwith limitation: see alinea d) real achievable performance:see alinea c) measured performance:
d) Memory bandwidth limitation
1 FOP -> 2B
GFlop/s | Flop/Byte |
---|---|
0.125 | 2.5 |
0.25 | 5 |
0.5 | 10 |
1 | 20 |
2 | 40 |
4 | 80 |
8 | 160 |
c)
2 FOP (operações vírgula flutuante) -> 2 doubles (16B) 1 operation/8B -> 0.125
GFlop/s | Flop/Byte |
---|---|
2.5 | 0.125 |