vault backup: 2023-09-19 12:50:29

This commit is contained in:
Alice 2023-09-19 12:50:29 +01:00
parent 7f8a183b31
commit 4415486b5b

View file

@ -58,7 +58,7 @@ A formula $F$ is:
- $F \models G$ iff for every assignment $A$, if $A \models F$ then $A \models G$. We say $G$ is a **consequence** of $F$. - $F \models G$ iff for every assignment $A$, if $A \models F$ then $A \models G$. We say $G$ is a **consequence** of $F$.
- $F \equiv G$ iff $F \models G$ and $G \models F$. We say $F$ and $G$ are **equivalent**. - $F \equiv G$ iff $F \models G$ and $G \models F$. We say $F$ and $G$ are **equivalent**.
- Let $\Gamma = {F_1, F_2, F_3,...}$ be a set of formulas. - Let $\Gamma = { F_1, F_2, F_3,... }$ be a set of formulas.
- $A \models \Gamma$ iff $A \models F_i$ for each formula $F_i$ in $\Gamma$. We say $A$ models $\Gamma$. - $A \models \Gamma$ iff $A \models F_i$ for each formula $F_i$ in $\Gamma$. We say $A$ models $\Gamma$.
- $\Gamma \models G$ iff $A \models \Gamma$ implies $A \models G$ for every assignment $A$. We say $G$ is a **consequence** of $\Gamma$. - $\Gamma \models G$ iff $A \models \Gamma$ implies $A \models G$ for every assignment $A$. We say $G$ is a **consequence** of $\Gamma$.
@ -67,8 +67,18 @@ A formula $F$ is:
> - $\Gamma \models G$ and $\Gamma$ finite iff $\models \land \Gamma \implies G$. > - $\Gamma \models G$ and $\Gamma$ finite iff $\models \land \Gamma \implies G$.
> >
- Let $\Gamma = { F_1, F_2, F_3,... }$ be a set of formulas.
- $\Gamma$ is *consistent* or *satisfiable* iff there is an assignment that models $\Gamma$.
- We say that $\Gamma$ is inconsistent or unsatisfiable iff there is not consistent and denote this by $\Gamma \models \bot$.
### 1.3 Basic Equivalences > [!tip]+ Proposition
> - {$F, \neg F$} \$models \bot$
> - If $\Gamma \models \bot$ and $\Gamma \subseteq \Gamma '$, then $\Gamma ' \models \bot$
> - $\Gamma \models F$ iff $\Gamma, \neg F \models \bot$
- Formula
### 1.2.1 Basic Equivalences
1. $\neg \neg A \equiv A$ 1. $\neg \neg A \equiv A$
2. $A \lor A \equiv A$ 2. $A \lor A \equiv A$
3. $A \land A \equiv A$ 3. $A \land A \equiv A$
@ -89,3 +99,5 @@ A formula $F$ is:
18. $A \iff B \equiv (A \implies B) \land (B \implies A)$ 18. $A \iff B \equiv (A \implies B) \land (B \implies A)$