vault backup: 2023-09-19 12:13:41

This commit is contained in:
Alice 2023-09-19 12:13:41 +01:00
parent c26037dee8
commit 7f8a183b31
2 changed files with 54 additions and 7 deletions

View file

@ -150,15 +150,15 @@
"obsidian-excalidraw-plugin:Create new drawing": false
}
},
"active": "4c008c59a631fa8d",
"active": "201fe1705c33e116",
"lastOpenFiles": [
"Notes/MFES/MFES - UC Details.md",
"README.md",
"Notes/MFES/T - Aula 2 - 18 Setembro 2023.md",
"Notes/MFES/MFES - UC Details.md",
"2023-09-18.md",
"MFES/T - Aula 2 - 18 Setembro 2023.md",
"Notes/RAS/T - Aula 2 - 19 Setembro 2023.md",
"Notes/RAS",
"Notes/MFES/T - Aula 2 - 18 Setembro 2023.md",
"Notes/MFES",
"Notes",
"RAS/T - Aula 2 - 19 Setembro 2023.md",

View file

@ -1,9 +1,9 @@
# Intro
# 1. Intro
*Formal modeling* - formally represent the system and its properties in the syntactic conventions that the tool understands and can process.
Formal Logic = logical language (logical symbols + non-logical symbols) + semantics +proof system
### SAT
### 1.1 SAT
<iframe title="Boolean Satisfiability Problem - Intro to Theoretical Computer Science" src="https://www.youtube.com/embed/uAdVzz1hKYY?feature=oembed" height="113" width="200" allowfullscreen="" allow="fullscreen" style="aspect-ratio: 1.76991 / 1; width: 100%; height: 100%;"></iframe>
The Boolean satisfiability (SAT) problem:
@ -25,7 +25,14 @@ Usually SAT solvers deal with formulas in conjunctive normal form (CNF)
> SAT is NP-complete
## Proposicional Logic (PL)
## 1.2 Proposicional Logic (PL)
>[!note] Nota
>Esta secção basicamente só contém revisão de conceitos. Aconselha-se a ver a coisa rapidamente, porque é só a formalidade de lógica escrita por extenso.
Let $A$ be an assignment and let $F$ be a formula. If $A(F) = 1$, then we say **$F$ holds under assignment**, or **$A$ models $F$.**
We write A $\models F$ iff $A(F)=1$, and $A \not \models F$ iff $A(F) = 0$.
An assignment is a function $A$ : $V_{prop} \implies {0,1}$ , that assigns to every
propositional variable a truth value. An assignment $A$ naturally extends to all formulas, $A$ : **Form** $\implies {0,1}$. The truth value of a formula is computed using **truth tables**:
@ -40,5 +47,45 @@ propositional variable a truth value. An assignment $A$ naturally extends to all
A formula $F$ is:
1. **valid** iff it holds under every assignment. We write $F$
1. **valid** iff it holds under every assignment. We write $\models F$. A valid formula is called a *tautology*.
2. **satisfiable** iff it folds (true) under some assignment.
3. **unsatisfiable** iff it holds under no assignment. An unsatisfiable formula is called a *contradiction*.
4. **refutable** iff it is not valid.
> [!tip]+ Proposition
> $F$ is **valid** iff $\neg F$ is **unsatisfiable**.
- $F \models G$ iff for every assignment $A$, if $A \models F$ then $A \models G$. We say $G$ is a **consequence** of $F$.
- $F \equiv G$ iff $F \models G$ and $G \models F$. We say $F$ and $G$ are **equivalent**.
- Let $\Gamma = {F_1, F_2, F_3,...}$ be a set of formulas.
- $A \models \Gamma$ iff $A \models F_i$ for each formula $F_i$ in $\Gamma$. We say $A$ models $\Gamma$.
- $\Gamma \models G$ iff $A \models \Gamma$ implies $A \models G$ for every assignment $A$. We say $G$ is a **consequence** of $\Gamma$.
> [!tip]+ Proposition
> - $F \models G$ iff $\models F \implies G$.
> - $\Gamma \models G$ and $\Gamma$ finite iff $\models \land \Gamma \implies G$.
>
### 1.3 Basic Equivalences
1. $\neg \neg A \equiv A$
2. $A \lor A \equiv A$
3. $A \land A \equiv A$
4. $A \land \neg A \equiv \bot$
5. $A \lor \neg A \equiv \top$
6. $A \lor B \equiv B \lor A$
7. $A \land B \equiv B \land A$
8. $A \land \top \equiv A$
9. $A \lor \top \equiv \top$
10. $A \land \bot \equiv \bot$
11. $A \lor \bot \equiv A$
12. $A \land (B \lor A) \equiv A$
13. $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$
14. $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
15. $\neg (A \lor B) \equiv \neg A \land \neg B$
16. $\neg (A \land B) \equiv \neg A \lor \neg B$
17. $A \implies B \equiv \neg A \lor B$
18. $A \iff B \equiv (A \implies B) \land (B \implies A)$