222 lines
7.7 KiB
Haskell
222 lines
7.7 KiB
Haskell
|
|
||
|
-- (c) MP-I (1998/9-2006/7) and CP (2005/6-2022/23)
|
||
|
|
||
|
module Exp where
|
||
|
|
||
|
import Cp
|
||
|
import BTree
|
||
|
import LTree
|
||
|
import FTree
|
||
|
import System.Process
|
||
|
import GHC.IO.Exception
|
||
|
import St
|
||
|
import List hiding (lookup)
|
||
|
import Data.List
|
||
|
import RelCalc
|
||
|
|
||
|
-- (0) Functions dependent on your OS -------------------------------------
|
||
|
|
||
|
wopen = ("start/b "++)
|
||
|
mopen = ("open "++)
|
||
|
|
||
|
--1) Windows
|
||
|
|
||
|
--open = wopen
|
||
|
|
||
|
--2) Mac OS
|
||
|
|
||
|
open = mopen
|
||
|
|
||
|
expShow fn e = do { expDisplay fn (mirrorExp e) ; system(open fn) }
|
||
|
|
||
|
-- (1) Datatype definition -----------------------------------------------------
|
||
|
|
||
|
data Exp v o = Var v -- expressions are either variables
|
||
|
| Term o [ Exp v o ] -- or terms involving operators and
|
||
|
-- subterms
|
||
|
deriving (Show,Eq)
|
||
|
|
||
|
inExp = either Var (uncurry Term)
|
||
|
outExp(Var v) = i1 v
|
||
|
outExp(Term o l) = i2(o,l)
|
||
|
|
||
|
-- (2) Ana + cata + hylo -------------------------------------------------------
|
||
|
|
||
|
baseExp f g h = f -|- (g >< map h)
|
||
|
|
||
|
recExp x = baseExp id id x
|
||
|
|
||
|
cataExp g = g . recExp (cataExp g) . outExp
|
||
|
|
||
|
anaExp g = inExp . recExp (anaExp g) . g
|
||
|
|
||
|
hyloExp h g = cataExp h . anaExp g
|
||
|
|
||
|
-- (3) Map ---------------------------------------------------------------------
|
||
|
|
||
|
instance BiFunctor Exp
|
||
|
where bmap f g = cataExp ( inExp . baseExp f g id )
|
||
|
|
||
|
-- (4) Examples ----------------------------------------------------------------
|
||
|
|
||
|
mirrorExp = cataExp (inExp . (id -|- (id><reverse)))
|
||
|
|
||
|
expLeaves :: Exp a b -> [a]
|
||
|
expLeaves = cataExp (either singl (concat . p2))
|
||
|
|
||
|
expOps :: Exp a b -> [b]
|
||
|
expOps = cataExp (either nil (cons . (id><concat)))
|
||
|
|
||
|
expWidth :: Exp a b -> Int
|
||
|
expWidth = length . expLeaves
|
||
|
|
||
|
expDepth :: Exp a b -> Int
|
||
|
expDepth = cataExp (either (const 1) (succ . (foldr max 0) . p2))
|
||
|
|
||
|
nodes :: Exp a a -> [a]
|
||
|
nodes = cataExp (either singl g) where g = cons . (id >< concat)
|
||
|
|
||
|
graph :: Exp (a, b) (c, d) -> Exp a c
|
||
|
graph = bmap fst fst
|
||
|
|
||
|
-- (5) Graphics (DOT / HTML) ---------------------------------------------------
|
||
|
|
||
|
cExp2Dot :: Exp (Maybe String) (Maybe String) -> String
|
||
|
cExp2Dot x = beg ++ main (deco x) ++ end where
|
||
|
main b = concat $ (map f . nodes) b ++ (map g . lnks . graph) b
|
||
|
beg = "digraph G {\n /* edge [label=0]; */\n graph [ranksep=0.5];\n"
|
||
|
end = "}\n"
|
||
|
g(k1,k2) = " " ++ show k1 ++ " -> " ++ show k2 ++ "[arrowhead=none];\n"
|
||
|
f(k,Nothing) = " " ++ show k ++ " [shape=plaintext, label=\"\"];\n"
|
||
|
f(k,Just s) = " " ++ show k ++ " [shape=circle, style=filled, fillcolor=\"#FFFF00\", label=\"" ++ s ++ "\"];\n"
|
||
|
|
||
|
dotpict t = do { writeFile "_.dot" (cExp2Dot t) ; system "open _.dot" }
|
||
|
|
||
|
exp2Html n (Var v) = [ LCell v n 1 ]
|
||
|
exp2Html n (Term o l) = g (expWidth (Term o l)) o (map (exp2Html (n-1)) l)
|
||
|
where g i o k = [ ICell o 1 i ] ++ (foldr (++) [] k)
|
||
|
|
||
|
expDisplay :: FilePath -> Exp String String -> IO ()
|
||
|
expDisplay fn = writeFile fn . exp2txt
|
||
|
|
||
|
exp2txt = concat . txtFlat . (html2Txt Str) . (uncurry exp2Html . (split expDepth id))
|
||
|
|
||
|
type Html a = [ Cell a ]
|
||
|
|
||
|
data Cell a = ICell a Int Int | LCell a Int Int deriving Show
|
||
|
|
||
|
data Txt = Str String | Blk [ Txt ] deriving Show
|
||
|
|
||
|
inds :: [a] -> [Int]
|
||
|
inds [] = []
|
||
|
inds (h:t) = inds t ++ [succ (length t)]
|
||
|
|
||
|
seq2ff :: [a] -> [(Int,a)]
|
||
|
seq2ff = (uncurry zip) . (split inds id)
|
||
|
|
||
|
ff2seq m = map p2 m
|
||
|
|
||
|
txtFlat :: Txt -> [[Char]]
|
||
|
txtFlat (Str s) = [s]
|
||
|
txtFlat (Blk []) = []
|
||
|
txtFlat (Blk (a:l)) = txtFlat a ++ txtFlat (Blk l)
|
||
|
|
||
|
html2Txt :: (a -> Txt) -> Html a -> Txt
|
||
|
html2Txt f = html . table . (foldr g u)
|
||
|
where u = Str "\n</tr>"
|
||
|
g c (Str s) = g c (Blk [Str s])
|
||
|
g (ICell a x y) (Blk b) = Blk ([ cell (f a) x y ] ++ b)
|
||
|
g (LCell a x y) (Blk b) = Blk ([ cell (f a) x y, Str "\n</tr>\n<tr>"] ++ b)
|
||
|
html t = Blk [ Str("<meta charset=\"utf-8\"/>"++"<html>\n<body bgcolor=\"#F4EFD8\" " ++
|
||
|
"text=\"#260000\" link=\"#008000\" " ++
|
||
|
"vlink=\"#800000\">\n"),
|
||
|
t,
|
||
|
Str "</html>\n"
|
||
|
]
|
||
|
table t = Blk [ Str "<table style=\"border-collapse:collapse;border:0.5px solid black;\" cellpadding=1 cellspacing=0>",
|
||
|
t,
|
||
|
Str "</table>\n"
|
||
|
]
|
||
|
cell c x y = Blk [ Str("\n<td style=\"border-collapse:collapse;border:0.4px solid black;\" rowspan=" ++
|
||
|
itoa y ++
|
||
|
" colspan=" ++
|
||
|
itoa x ++
|
||
|
" align=\"left\"" ++
|
||
|
">\n"),
|
||
|
c,
|
||
|
Str "\n</td>"
|
||
|
]
|
||
|
itoa x = show x
|
||
|
|
||
|
-- (6) Monad -------------------------------------------------------------------
|
||
|
|
||
|
muExp = cataExp (either id (uncurry Term))
|
||
|
|
||
|
-- (7) Auxiliary functions -----------------------------------------------------
|
||
|
|
||
|
class (Show t) => Expclass t where
|
||
|
pict :: t -> IO ExitCode
|
||
|
--------------------------------------------------------------------------------
|
||
|
instance (Show v, Show o) => Expclass (Exp v o) where
|
||
|
pict = expShow "_.html" . bmap show show
|
||
|
--------------------------------------------------------------------------------
|
||
|
instance (Show a) => Expclass (BTree a) where
|
||
|
pict = expShow "_.html" . cBTree2Exp . (fmap show)
|
||
|
|
||
|
cBTree2Exp :: BTree a -> Exp [Char] a
|
||
|
cBTree2Exp = cataBTree (either (const (Var "nil")) h)
|
||
|
where h(a,(b,c)) = Term a [b,c]
|
||
|
--------------------------------------------------------------------------------
|
||
|
instance (Show a) => Expclass [a] where
|
||
|
pict = expShow "_.html" . cL2Exp . (fmap show)
|
||
|
|
||
|
cL2Exp [] = Var " "
|
||
|
cL2Exp l = Term "List" (map Var l)
|
||
|
|
||
|
--------------------------------------------------------------------------------
|
||
|
instance (Show a) => Expclass (LTree a) where
|
||
|
pict = expShow "_.html" . cLTree2Exp . (fmap show)
|
||
|
|
||
|
cLTree2Exp = cataLTree (either Var h)
|
||
|
where h(a,b) = Term "Fork" [a,b]
|
||
|
--------------------------------------------------------------------------------
|
||
|
cFTree2Exp = cataFTree (inExp . (id -|- (id><f))) where f(a,b)=[a,b]
|
||
|
--------------------------------------------------------------------------------
|
||
|
lnks :: Exp a a -> [(a, a)]
|
||
|
lnks (Var n) = []
|
||
|
lnks (Term n x) = (x >>= lnks) ++ [ (n,m) | Term m _ <- x ] ++ [ (n,m) | Var m <- x ]
|
||
|
--------------------------------------------------------------------------------
|
||
|
deco :: Num n => Exp v o -> Exp (n, v) (n, o)
|
||
|
deco e = fst (st (f e) 0) where
|
||
|
f (Var e) = do {n <- get ; put(n+1); return (Var(n,e)) }
|
||
|
f (Term o l) = do { n <- get ; put(n+1);
|
||
|
m <- sequence (map f l);
|
||
|
return (Term (n,o) m)
|
||
|
}
|
||
|
--------------------------------------------------------------------------------
|
||
|
untar :: (Ord v, Ord o) => [([o], v)] -> [Exp v o]
|
||
|
untar = a . (base id id untar) . c where
|
||
|
a=sort.map inExp -- algebra
|
||
|
c=join.(id><collect).sep. map((p2-|-assocr).distl.(outList >< id)) -- coalgebra
|
||
|
base a b y = map(b -|- a >< y)
|
||
|
|
||
|
tar = cataExp g where
|
||
|
g = either v o
|
||
|
v = singl . (split nil id)
|
||
|
o = (>>= f ) . lstr
|
||
|
f (o,l)=[(o:a,x)|(a,x)<-l]
|
||
|
|
||
|
instance (Ord v, Ord o) => Ord (Exp v o) where
|
||
|
Var v <= Var u = v <= u
|
||
|
Var v <= Term o x = False
|
||
|
Term o x <= Var v = True
|
||
|
Term o x <= Term o' x' = o >= o'
|
||
|
|
||
|
{-- instance Ord (Exp String String) where
|
||
|
Var v <= Var u = v <= u
|
||
|
Var v <= Term o x = False
|
||
|
Term o x <= Var v = True
|
||
|
Term o x <= Term o' x' = o >= o'
|
||
|
--}
|
||
|
-------------------------------------------------------------------------------
|