HaskCalc/cp2223t/RelCalc.hs

210 lines
4.6 KiB
Haskell
Raw Normal View History

2022-11-19 11:35:14 +00:00
{-# OPTIONS_GHC -XNoMonomorphismRestriction #-}
-- (c) CP/MFP (2007/2022)
module RelCalc where
import Data.List
import Cp hiding (tot)
--- composition (left to right to be consistent with Alloy) ----
comp :: (Eq b, Ord a, Ord c) => [(a, b)] -> [(b, c)] -> [(a, c)]
comp m n = set [ (a,c) | (a,b) <- m, (b',c) <- n, b==b' ]
--- converse
conv :: (Ord b, Ord a) => [(a, b)] -> [(b, a)]
conv = smap swap
--- composition with a function
fcomp r f = smap (id><f) r
lcomp f s = conv(conv s `fcomp` f)
--- relational inclusion
sse r s = all ((flip elem) s) r -- sse: subset or equal
atmost = sse
--- union and intersection
inter s r = set (intersect s r)
runion s r = set (union s r)
--- kernel and image
ker r = r `comp` (conv r)
img r = conv r `comp` r
--- coreflexives
crflx :: Ord c => [c] -> [(c, c)]
crflx = smap (split id id)
point :: Ord c => c -> [(c, c)]
point = crflx . singl
-- domain and range
dom :: Ord a => [(a, b)] -> [a]
dom = smap p1
rng :: Ord b => [(a, b)] -> [b]
rng = smap p2
rho = crflx . rng
delta = rho . conv
-- properties of relations
coreflexive = all (uncurry(==))
injective = simple . conv
simple :: (Ord b, Ord a) => [(a, b)] -> Bool
simple = coreflexive . img
consistent m n = coreflexive (conv m `comp` n)
-- restriction operators
domr :: (Ord a, Ord t) => [a] -> [(a, t)] -> [(a, t)] -- domain restrict
domr s r = (crflx s) `comp` r
doms s r = r \\ (domr s r) -- domain subtract
r.-.s = doms (dom s) r
-- relation overriding
plus :: (Ord a, Ord t) => [(a, t)] -> [(a, t)] -> [(a, t)]
plus m n = runion (drminus (dom n) m) n
drminus s r = domr (sdiff (dom r) s) r
drplus s r = domr (inter (dom r) s) r
-- relation coproduct
reither a b = (set.conv) (runion (conv a `fcomp` i1) (conv b `fcomp` i2))
unreither r = (a,b) where
a = set [(x,y) | (Left x,y) <- r]
b = set [(x,y) | (Right x,y) <- r]
-- pairing
rjoin r s = discollect $ smap (id><dstr) $ meet (collect r)(collect s) where dstr(y,x) = nub [(b,a) | b <- y, a <- x]
meet m n = [ k |-> (pap m k, pap n k) | k <- inter (dom m) (dom n)] -- assumes m and n simple
rzipWith f a b = (rjoin a b `fcomp` f)
-- relation 'currying'
unvec = smap f where f(a,(c,b)) = ((a,b),c)
vec = smap f where f((a,b),c) = (a,(c,b))
-- constant relation on a set
pconst k s = smap (split id (const k)) s
--- power transpose
pT = flip tot [] . collect -- power transpose
collect :: (Ord b, Ord a) => [(b, a)] -> [(b, [a])]
collect x = set [ k |-> set [ d' | (k',d') <- x , k'==k ] | (k,d) <- x ]
-- Maybe transpose (assumes simplicity)
mT :: Eq a => [(a, b)] -> a -> Maybe b
mT = flip lookup
pap :: Eq a => [(a, t)] -> a -> t
pap m = unJust . (mT m) where unJust (Just a) = a -- partial inspector of simple relation A->B
-- tot m b a = if a `elem` dom m then pap m a else b -- total inspector of simple relation A->B
tot m b = maybe b id . mT m
-- tap m a = if a `elem` dom m then pap m a else a -- total inspector of simple relation, A->A
tap m a = tot m a a
condid p f = cond p f id
pmap = map . pap -- mapping a simple relation
idx x = pap (zip x [0..])
--- sets modelled by sorted, repeat-free lists (naive but useful)
set = sort . nub
card = length . set
smap :: Ord a => (b -> a) -> [b] -> [a]
smap f = set . (map f)
--- histograms and distributions
hist :: Eq a => [a] -> [(a, Int)]
hist l = nub [ (x, count x l) | x <- l ]
where count a l = length [ x | x <- l, x == a]
dist :: (Eq a, Fractional b) => [a] -> [(a, b)]
dist l = [ (x, (fromIntegral n) / (fromIntegral t)) | (x,n) <- hist l ] where t = length l
histpair h1 h2 = both `fcomp` (split (tot h1 0)(tot h2 0)) where both = crflx (dom h1 `union` dom h2)
-- miscellaneous
discollect :: [(a, [b])] -> [(a, b)]
discollect = (>>=lstr)
presort f = map snd . sort . (map (split f id)) -- pre-sorting on f-preorder
rpresort f = reverse . (presort f) -- the same in reverse ordering
sdiff x y = set [ a | a <- x, not(elem a y) ]
a |-> b = (a,b)
(f `is` v) x = (f x) == v
(f `belongs` v) x = (f x) `elem` v
(v `can_be_found_in` f) x = v `elem` (f x)
(f `isnot` v) x = (f x) /= v
unpair(a,b)=[a,b]
pair [a,b]=(a,b)
a .><. b = [ (x,y) | x <- a, y <- b ]
x .+. y = map Left x ++ map Right y
-----------------------------------------------------------------------------
proj k a = map (split k a)
{-----------------------------------------------------------------------------
-- Sample data
data A = A1 | A2 | A3 | A4 | A5 deriving (Show,Eq,Ord,Enum)
data B = B1 | B2 | B3 | B4 | B5 deriving (Show,Eq,Ord,Enum)
tA = [A1 .. A5]
tB = [B1 .. B5]
idA = crflx tA
idB = crflx tB
-----------------------------------------------------------------------------}
rcons(x,a) = x++[a]