259 lines
7.2 KiB
Python
259 lines
7.2 KiB
Python
"""
|
|
utm
|
|
===
|
|
|
|
.. image:: https://travis-ci.org/Turbo87/utm.png
|
|
|
|
Bidirectional UTM-WGS84 converter for python
|
|
|
|
Usage
|
|
-----
|
|
|
|
::
|
|
|
|
import utm
|
|
|
|
Convert a (latitude, longitude) tuple into an UTM coordinate::
|
|
|
|
utm.from_latlon(51.2, 7.5)
|
|
>>> (395201.3103811303, 5673135.241182375, 32, 'U')
|
|
|
|
Convert an UTM coordinate into a (latitude, longitude) tuple::
|
|
|
|
utm.to_latlon(340000, 5710000, 32, 'U')
|
|
>>> (51.51852098408468, 6.693872395145327)
|
|
|
|
Speed
|
|
-----
|
|
|
|
The library has been compared to the more generic pyproj library by running the
|
|
unit test suite through pyproj instead of utm. These are the results:
|
|
|
|
* with pyproj (without projection cache): 4.0 - 4.5 sec
|
|
* with pyproj (with projection cache): 0.9 - 1.0 sec
|
|
* with utm: 0.4 - 0.5 sec
|
|
|
|
Authors
|
|
-------
|
|
|
|
* Tobias Bieniek <Tobias.Bieniek@gmx.de>
|
|
|
|
License
|
|
-------
|
|
|
|
Copyright (C) 2012 Tobias Bieniek <Tobias.Bieniek@gmx.de>
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
"""
|
|
|
|
import math
|
|
|
|
__all__ = ['to_latlon', 'from_latlon']
|
|
|
|
|
|
class OutOfRangeError(ValueError):
|
|
pass
|
|
|
|
|
|
K0 = 0.9996
|
|
|
|
E = 0.00669438
|
|
E2 = E * E
|
|
E3 = E2 * E
|
|
E_P2 = E / (1.0 - E)
|
|
|
|
SQRT_E = math.sqrt(1 - E)
|
|
_E = (1 - SQRT_E) / (1 + SQRT_E)
|
|
_E3 = _E * _E * _E
|
|
_E4 = _E3 * _E
|
|
|
|
M1 = (1 - E / 4 - 3 * E2 / 64 - 5 * E3 / 256)
|
|
M2 = (3 * E / 8 + 3 * E2 / 32 + 45 * E3 / 1024)
|
|
M3 = (15 * E2 / 256 + 45 * E3 / 1024)
|
|
M4 = (35 * E3 / 3072)
|
|
|
|
P2 = (3 * _E / 2 - 27 * _E3 / 32)
|
|
P3 = (21 * _E3 / 16 - 55 * _E4 / 32)
|
|
P4 = (151 * _E3 / 96)
|
|
|
|
R = 6378137
|
|
|
|
ZONE_LETTERS = [
|
|
(84, None), (72, 'X'), (64, 'W'), (56, 'V'), (48, 'U'), (40, 'T'),
|
|
(32, 'S'), (24, 'R'), (16, 'Q'), (8, 'P'), (0, 'N'), (-8, 'M'), (-16, 'L'),
|
|
(-24, 'K'), (-32, 'J'), (-40, 'H'), (-48, 'G'), (-56, 'F'), (-64, 'E'),
|
|
(-72, 'D'), (-80, 'C')
|
|
]
|
|
|
|
|
|
def to_latlon(easting, northing, zone_number, zone_letter):
|
|
zone_letter = zone_letter.upper()
|
|
|
|
if not 100000 <= easting < 1000000:
|
|
raise OutOfRangeError('easting out of range (must be between 100.000 m and 999.999 m)')
|
|
if not 0 <= northing <= 10000000:
|
|
raise OutOfRangeError('northing out of range (must be between 0 m and 10.000.000 m)')
|
|
if not 1 <= zone_number <= 60:
|
|
raise OutOfRangeError('zone number out of range (must be between 1 and 60)')
|
|
if not 'C' <= zone_letter <= 'X' or zone_letter in ['I', 'O']:
|
|
raise OutOfRangeError('zone letter out of range (must be between C and X)')
|
|
|
|
x = easting - 500000
|
|
y = northing
|
|
|
|
if zone_letter < 'N':
|
|
y -= 10000000
|
|
|
|
m = y / K0
|
|
mu = m / (R * M1)
|
|
|
|
p_rad = (mu + P2 * math.sin(2 * mu) + P3 * math.sin(4 * mu) + P4 * math.sin(6 * mu))
|
|
|
|
p_sin = math.sin(p_rad)
|
|
p_sin2 = p_sin * p_sin
|
|
|
|
p_cos = math.cos(p_rad)
|
|
|
|
p_tan = p_sin / p_cos
|
|
p_tan2 = p_tan * p_tan
|
|
p_tan4 = p_tan2 * p_tan2
|
|
|
|
ep_sin = 1 - E * p_sin2
|
|
ep_sin_sqrt = math.sqrt(1 - E * p_sin2)
|
|
|
|
n = R / ep_sin_sqrt
|
|
r = (1 - E) / ep_sin
|
|
|
|
c = _E * p_cos ** 2
|
|
c2 = c * c
|
|
|
|
d = x / (n * K0)
|
|
d2 = d * d
|
|
d3 = d2 * d
|
|
d4 = d3 * d
|
|
d5 = d4 * d
|
|
d6 = d5 * d
|
|
|
|
latitude = (p_rad - (p_tan / r) *
|
|
(d2 / 2 -
|
|
d4 / 24 * (5 + 3 * p_tan2 + 10 * c - 4 * c2 - 9 * E_P2)) +
|
|
d6 / 720 * (61 + 90 * p_tan2 + 298 * c + 45 * p_tan4 - 252 * E_P2 - 3 * c2))
|
|
|
|
longitude = (d -
|
|
d3 / 6 * (1 + 2 * p_tan2 + c) +
|
|
d5 / 120 * (5 - 2 * c + 28 * p_tan2 - 3 * c2 + 8 * E_P2 + 24 * p_tan4)) / p_cos
|
|
|
|
return (math.degrees(latitude),
|
|
math.degrees(longitude) + zone_number_to_central_longitude(zone_number))
|
|
|
|
|
|
def from_latlon(latitude, longitude):
|
|
if not -80.0 <= latitude <= 84.0:
|
|
raise OutOfRangeError('latitude out of range (must be between 80 deg S and 84 deg N)')
|
|
if not -180.0 <= longitude <= 180.0:
|
|
raise OutOfRangeError('northing out of range (must be between 180 deg W and 180 deg E)')
|
|
|
|
lat_rad = math.radians(latitude)
|
|
lat_sin = math.sin(lat_rad)
|
|
lat_cos = math.cos(lat_rad)
|
|
|
|
lat_tan = lat_sin / lat_cos
|
|
lat_tan2 = lat_tan * lat_tan
|
|
lat_tan4 = lat_tan2 * lat_tan2
|
|
|
|
lon_rad = math.radians(longitude)
|
|
|
|
zone_number = latlon_to_zone_number(latitude, longitude)
|
|
central_lon = zone_number_to_central_longitude(zone_number)
|
|
central_lon_rad = math.radians(central_lon)
|
|
|
|
zone_letter = latitude_to_zone_letter(latitude)
|
|
|
|
n = R / math.sqrt(1 - E * lat_sin ** 2)
|
|
c = E_P2 * lat_cos ** 2
|
|
|
|
a = lat_cos * (lon_rad - central_lon_rad)
|
|
a2 = a * a
|
|
a3 = a2 * a
|
|
a4 = a3 * a
|
|
a5 = a4 * a
|
|
a6 = a5 * a
|
|
|
|
m = R * (M1 * lat_rad -
|
|
M2 * math.sin(2 * lat_rad) +
|
|
M3 * math.sin(4 * lat_rad) -
|
|
M4 * math.sin(6 * lat_rad))
|
|
|
|
easting = K0 * n * (a +
|
|
a3 / 6 * (1 - lat_tan2 + c) +
|
|
a5 / 120 * (5 - 18 * lat_tan2 + lat_tan4 + 72 * c - 58 * E_P2)) + 500000
|
|
|
|
northing = K0 * (m + n * lat_tan * (a2 / 2 +
|
|
a4 / 24 * (5 - lat_tan2 + 9 * c + 4 * c ** 2) +
|
|
a6 / 720 * (61 - 58 * lat_tan2 + lat_tan4 + 600 * c - 330 * E_P2)))
|
|
|
|
if latitude < 0:
|
|
northing += 10000000
|
|
|
|
return easting, northing, zone_number, zone_letter
|
|
|
|
|
|
def latitude_to_zone_letter(latitude):
|
|
for lat_min, zone_letter in ZONE_LETTERS:
|
|
if latitude >= lat_min:
|
|
return zone_letter
|
|
|
|
return None
|
|
|
|
|
|
def latlon_to_zone_number(latitude, longitude):
|
|
if 56 <= latitude <= 64 and 3 <= longitude <= 12:
|
|
return 32
|
|
|
|
if 72 <= latitude <= 84 and longitude >= 0:
|
|
if longitude <= 9:
|
|
return 31
|
|
elif longitude <= 21:
|
|
return 33
|
|
elif longitude <= 33:
|
|
return 35
|
|
elif longitude <= 42:
|
|
return 37
|
|
|
|
return int((longitude + 180) / 6) + 1
|
|
|
|
|
|
def zone_number_to_central_longitude(zone_number):
|
|
return (zone_number - 1) * 6 - 180 + 3
|
|
|
|
|
|
def haversine(lon1, lat1, lon2, lat2):
|
|
"""
|
|
Calculate the great circle distance between two points
|
|
on the earth (specified in decimal degrees)
|
|
"""
|
|
# convert decimal degrees to radians
|
|
lon1, lat1, lon2, lat2 = map(math.radians, [lon1, lat1, lon2, lat2])
|
|
# haversine formula
|
|
dlon = lon2 - lon1
|
|
dlat = lat2 - lat1
|
|
a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
|
|
c = 2 * math.asin(math.sqrt(a))
|
|
m = 6367000 * c
|
|
return m
|