216 lines
8.3 KiB
Python
Executable file
216 lines
8.3 KiB
Python
Executable file
#!/usr/bin/env python
|
|
# this file is from http://pygps.org/
|
|
|
|
# Lat Long - UTM, UTM - Lat Long conversions
|
|
|
|
from math import pi, sin, cos, tan, sqrt
|
|
|
|
#LatLong- UTM conversion..h
|
|
#definitions for lat/long to UTM and UTM to lat/lng conversions
|
|
#include <string.h>
|
|
|
|
_deg2rad = pi / 180.0
|
|
_rad2deg = 180.0 / pi
|
|
|
|
_EquatorialRadius = 2
|
|
_eccentricitySquared = 3
|
|
|
|
_ellipsoid = [
|
|
# id, Ellipsoid name, Equatorial Radius, square of eccentricity
|
|
# first once is a placeholder only, To allow array indices to match id numbers
|
|
[ -1, "Placeholder", 0, 0],
|
|
[ 1, "Airy", 6377563, 0.00667054],
|
|
[ 2, "Australian National", 6378160, 0.006694542],
|
|
[ 3, "Bessel 1841", 6377397, 0.006674372],
|
|
[ 4, "Bessel 1841 (Nambia] ", 6377484, 0.006674372],
|
|
[ 5, "Clarke 1866", 6378206, 0.006768658],
|
|
[ 6, "Clarke 1880", 6378249, 0.006803511],
|
|
[ 7, "Everest", 6377276, 0.006637847],
|
|
[ 8, "Fischer 1960 (Mercury] ", 6378166, 0.006693422],
|
|
[ 9, "Fischer 1968", 6378150, 0.006693422],
|
|
[ 10, "GRS 1967", 6378160, 0.006694605],
|
|
[ 11, "GRS 1980", 6378137, 0.00669438],
|
|
[ 12, "Helmert 1906", 6378200, 0.006693422],
|
|
[ 13, "Hough", 6378270, 0.00672267],
|
|
[ 14, "International", 6378388, 0.00672267],
|
|
[ 15, "Krassovsky", 6378245, 0.006693422],
|
|
[ 16, "Modified Airy", 6377340, 0.00667054],
|
|
[ 17, "Modified Everest", 6377304, 0.006637847],
|
|
[ 18, "Modified Fischer 1960", 6378155, 0.006693422],
|
|
[ 19, "South American 1969", 6378160, 0.006694542],
|
|
[ 20, "WGS 60", 6378165, 0.006693422],
|
|
[ 21, "WGS 66", 6378145, 0.006694542],
|
|
[ 22, "WGS-72", 6378135, 0.006694318],
|
|
[ 23, "WGS-84", 6378137, 0.00669438]
|
|
]
|
|
|
|
#Reference ellipsoids derived from Peter H. Dana's website-
|
|
#http://www.utexas.edu/depts/grg/gcraft/notes/datum/elist.html
|
|
#Department of Geography, University of Texas at Austin
|
|
#Internet: pdana@mail.utexas.edu
|
|
#3/22/95
|
|
|
|
#Source
|
|
#Defense Mapping Agency. 1987b. DMA Technical Report: Supplement to Department of Defense World Geodetic System
|
|
#1984 Technical Report. Part I and II. Washington, DC: Defense Mapping Agency
|
|
|
|
#def LLtoUTM(int ReferenceEllipsoid, const double Lat, const double Long,
|
|
# double &UTMNorthing, double &UTMEasting, char* UTMZone)
|
|
|
|
def LLtoUTM(ReferenceEllipsoid, Lat, Long, zone = None):
|
|
"""converts lat/long to UTM coords. Equations from USGS Bulletin 1532
|
|
East Longitudes are positive, West longitudes are negative.
|
|
North latitudes are positive, South latitudes are negative
|
|
Lat and Long are in decimal degrees
|
|
Written by Chuck Gantz- chuck.gantz@globalstar.com"""
|
|
|
|
a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
|
|
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
|
|
k0 = 0.9996
|
|
|
|
#Make sure the longitude is between -180.00 .. 179.9
|
|
LongTemp = (Long+180)-int((Long+180)/360)*360-180 # -180.00 .. 179.9
|
|
|
|
LatRad = Lat*_deg2rad
|
|
LongRad = LongTemp*_deg2rad
|
|
|
|
if zone is None:
|
|
ZoneNumber = int((LongTemp + 180)/6) + 1
|
|
else:
|
|
ZoneNumber = zone
|
|
|
|
if Lat >= 56.0 and Lat < 64.0 and LongTemp >= 3.0 and LongTemp < 12.0:
|
|
ZoneNumber = 32
|
|
|
|
# Special zones for Svalbard
|
|
if Lat >= 72.0 and Lat < 84.0:
|
|
if LongTemp >= 0.0 and LongTemp < 9.0:ZoneNumber = 31
|
|
elif LongTemp >= 9.0 and LongTemp < 21.0: ZoneNumber = 33
|
|
elif LongTemp >= 21.0 and LongTemp < 33.0: ZoneNumber = 35
|
|
elif LongTemp >= 33.0 and LongTemp < 42.0: ZoneNumber = 37
|
|
|
|
LongOrigin = (ZoneNumber - 1)*6 - 180 + 3 #+3 puts origin in middle of zone
|
|
LongOriginRad = LongOrigin * _deg2rad
|
|
|
|
#compute the UTM Zone from the latitude and longitude
|
|
UTMZone = "%d%c" % (ZoneNumber, _UTMLetterDesignator(Lat))
|
|
|
|
eccPrimeSquared = (eccSquared)/(1-eccSquared)
|
|
N = a/sqrt(1-eccSquared*sin(LatRad)*sin(LatRad))
|
|
T = tan(LatRad)*tan(LatRad)
|
|
C = eccPrimeSquared*cos(LatRad)*cos(LatRad)
|
|
A = cos(LatRad)*(LongRad-LongOriginRad)
|
|
|
|
M = a*((1
|
|
- eccSquared/4
|
|
- 3*eccSquared*eccSquared/64
|
|
- 5*eccSquared*eccSquared*eccSquared/256)*LatRad
|
|
- (3*eccSquared/8
|
|
+ 3*eccSquared*eccSquared/32
|
|
+ 45*eccSquared*eccSquared*eccSquared/1024)*sin(2*LatRad)
|
|
+ (15*eccSquared*eccSquared/256 + 45*eccSquared*eccSquared*eccSquared/1024)*sin(4*LatRad)
|
|
- (35*eccSquared*eccSquared*eccSquared/3072)*sin(6*LatRad))
|
|
|
|
UTMEasting = (k0*N*(A+(1-T+C)*A*A*A/6
|
|
+ (5-18*T+T*T+72*C-58*eccPrimeSquared)*A*A*A*A*A/120)
|
|
+ 500000.0)
|
|
|
|
UTMNorthing = (k0*(M+N*tan(LatRad)*(A*A/2+(5-T+9*C+4*C*C)*A*A*A*A/24
|
|
+ (61
|
|
-58*T
|
|
+T*T
|
|
+600*C
|
|
-330*eccPrimeSquared)*A*A*A*A*A*A/720)))
|
|
|
|
if Lat < 0:
|
|
UTMNorthing = UTMNorthing + 10000000.0; #10000000 meter offset for southern hemisphere
|
|
return (UTMZone, UTMEasting, UTMNorthing)
|
|
|
|
|
|
def _UTMLetterDesignator(Lat):
|
|
"""This routine determines the correct UTM letter designator for the given
|
|
latitude returns 'Z' if latitude is outside the UTM limits of 84N to 80S
|
|
Written by Chuck Gantz- chuck.gantz@globalstar.com"""
|
|
|
|
if 84 >= Lat >= 72: return 'X'
|
|
elif 72 > Lat >= 64: return 'W'
|
|
elif 64 > Lat >= 56: return 'V'
|
|
elif 56 > Lat >= 48: return 'U'
|
|
elif 48 > Lat >= 40: return 'T'
|
|
elif 40 > Lat >= 32: return 'S'
|
|
elif 32 > Lat >= 24: return 'R'
|
|
elif 24 > Lat >= 16: return 'Q'
|
|
elif 16 > Lat >= 8: return 'P'
|
|
elif 8 > Lat >= 0: return 'N'
|
|
elif 0 > Lat >= -8: return 'M'
|
|
elif -8> Lat >= -16: return 'L'
|
|
elif -16 > Lat >= -24: return 'K'
|
|
elif -24 > Lat >= -32: return 'J'
|
|
elif -32 > Lat >= -40: return 'H'
|
|
elif -40 > Lat >= -48: return 'G'
|
|
elif -48 > Lat >= -56: return 'F'
|
|
elif -56 > Lat >= -64: return 'E'
|
|
elif -64 > Lat >= -72: return 'D'
|
|
elif -72 > Lat >= -80: return 'C'
|
|
else: return 'Z' # if the Latitude is outside the UTM limits
|
|
|
|
#void UTMtoLL(int ReferenceEllipsoid, const double UTMNorthing, const double UTMEasting, const char* UTMZone,
|
|
# double& Lat, double& Long )
|
|
|
|
def UTMtoLL(ReferenceEllipsoid, northing, easting, zone):
|
|
"""converts UTM coords to lat/long. Equations from USGS Bulletin 1532
|
|
East Longitudes are positive, West longitudes are negative.
|
|
North latitudes are positive, South latitudes are negative
|
|
Lat and Long are in decimal degrees.
|
|
Written by Chuck Gantz- chuck.gantz@globalstar.com
|
|
Converted to Python by Russ Nelson <nelson@crynwr.com>"""
|
|
|
|
k0 = 0.9996
|
|
a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
|
|
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
|
|
e1 = (1-sqrt(1-eccSquared))/(1+sqrt(1-eccSquared))
|
|
#NorthernHemisphere; //1 for northern hemispher, 0 for southern
|
|
|
|
x = easting - 500000.0 #remove 500,000 meter offset for longitude
|
|
y = northing
|
|
|
|
ZoneLetter = zone[-1]
|
|
ZoneNumber = int(zone[:-1])
|
|
if ZoneLetter >= 'N':
|
|
NorthernHemisphere = 1 # point is in northern hemisphere
|
|
else:
|
|
NorthernHemisphere = 0 # point is in southern hemisphere
|
|
y -= 10000000.0 # remove 10,000,000 meter offset used for southern hemisphere
|
|
|
|
LongOrigin = (ZoneNumber - 1)*6 - 180 + 3 # +3 puts origin in middle of zone
|
|
|
|
eccPrimeSquared = (eccSquared)/(1-eccSquared)
|
|
|
|
M = y / k0
|
|
mu = M/(a*(1-eccSquared/4-3*eccSquared*eccSquared/64-5*eccSquared*eccSquared*eccSquared/256))
|
|
|
|
phi1Rad = (mu + (3*e1/2-27*e1*e1*e1/32)*sin(2*mu)
|
|
+ (21*e1*e1/16-55*e1*e1*e1*e1/32)*sin(4*mu)
|
|
+(151*e1*e1*e1/96)*sin(6*mu))
|
|
phi1 = phi1Rad*_rad2deg;
|
|
|
|
N1 = a/sqrt(1-eccSquared*sin(phi1Rad)*sin(phi1Rad))
|
|
T1 = tan(phi1Rad)*tan(phi1Rad)
|
|
C1 = eccPrimeSquared*cos(phi1Rad)*cos(phi1Rad)
|
|
R1 = a*(1-eccSquared)/pow(1-eccSquared*sin(phi1Rad)*sin(phi1Rad), 1.5)
|
|
D = x/(N1*k0)
|
|
|
|
Lat = phi1Rad - (N1*tan(phi1Rad)/R1)*(D*D/2-(5+3*T1+10*C1-4*C1*C1-9*eccPrimeSquared)*D*D*D*D/24
|
|
+(61+90*T1+298*C1+45*T1*T1-252*eccPrimeSquared-3*C1*C1)*D*D*D*D*D*D/720)
|
|
Lat = Lat * _rad2deg
|
|
|
|
Long = (D-(1+2*T1+C1)*D*D*D/6+(5-2*C1+28*T1-3*C1*C1+8*eccPrimeSquared+24*T1*T1)
|
|
*D*D*D*D*D/120)/cos(phi1Rad)
|
|
Long = LongOrigin + Long * _rad2deg
|
|
return (Lat, Long)
|
|
|
|
if __name__ == '__main__':
|
|
(z, e, n) = LLtoUTM(23, 45.00, -75.00)
|
|
print z, e, n
|
|
print UTMtoLL(23, n, e, z)
|
|
|