246 lines
9 KiB
Python
Executable file
246 lines
9 KiB
Python
Executable file
#!/usr/bin/env python
|
|
# this file is from http://pygps.org/
|
|
|
|
# Lat Long - UTM, UTM - Lat Long conversions
|
|
|
|
from math import pi, sin, cos, tan, sqrt
|
|
|
|
# LatLong- UTM conversion..h
|
|
# definitions for lat/long to UTM and UTM to lat/lng conversions
|
|
# include <string.h>
|
|
|
|
_deg2rad = pi / 180.0
|
|
_rad2deg = 180.0 / pi
|
|
|
|
_EquatorialRadius = 2
|
|
_eccentricitySquared = 3
|
|
|
|
_ellipsoid = [
|
|
# id, Ellipsoid name, Equatorial Radius, square of eccentricity
|
|
# first once is a placeholder only, To allow array indices to match id numbers
|
|
[-1, "Placeholder", 0, 0],
|
|
[1, "Airy", 6377563, 0.00667054],
|
|
[2, "Australian National", 6378160, 0.006694542],
|
|
[3, "Bessel 1841", 6377397, 0.006674372],
|
|
[4, "Bessel 1841 (Nambia] ", 6377484, 0.006674372],
|
|
[5, "Clarke 1866", 6378206, 0.006768658],
|
|
[6, "Clarke 1880", 6378249, 0.006803511],
|
|
[7, "Everest", 6377276, 0.006637847],
|
|
[8, "Fischer 1960 (Mercury] ", 6378166, 0.006693422],
|
|
[9, "Fischer 1968", 6378150, 0.006693422],
|
|
[10, "GRS 1967", 6378160, 0.006694605],
|
|
[11, "GRS 1980", 6378137, 0.00669438],
|
|
[12, "Helmert 1906", 6378200, 0.006693422],
|
|
[13, "Hough", 6378270, 0.00672267],
|
|
[14, "International", 6378388, 0.00672267],
|
|
[15, "Krassovsky", 6378245, 0.006693422],
|
|
[16, "Modified Airy", 6377340, 0.00667054],
|
|
[17, "Modified Everest", 6377304, 0.006637847],
|
|
[18, "Modified Fischer 1960", 6378155, 0.006693422],
|
|
[19, "South American 1969", 6378160, 0.006694542],
|
|
[20, "WGS 60", 6378165, 0.006693422],
|
|
[21, "WGS 66", 6378145, 0.006694542],
|
|
[22, "WGS-72", 6378135, 0.006694318],
|
|
[23, "WGS-84", 6378137, 0.00669438]
|
|
]
|
|
|
|
|
|
# Reference ellipsoids derived from Peter H. Dana's website-
|
|
# http://www.utexas.edu/depts/grg/gcraft/notes/datum/elist.html
|
|
# Department of Geography, University of Texas at Austin
|
|
# Internet: pdana@mail.utexas.edu
|
|
# 3/22/95
|
|
|
|
# Source
|
|
# Defense Mapping Agency. 1987b. DMA Technical Report: Supplement to Department of Defense World Geodetic System
|
|
# 1984 Technical Report. Part I and II. Washington, DC: Defense Mapping Agency
|
|
|
|
# def LLtoUTM(int ReferenceEllipsoid, const double Lat, const double Long,
|
|
# double &UTMNorthing, double &UTMEasting, char* UTMZone)
|
|
|
|
def LLtoUTM(ReferenceEllipsoid, Lat, Long, zone=None):
|
|
"""converts lat/long to UTM coords. Equations from USGS Bulletin 1532
|
|
East Longitudes are positive, West longitudes are negative.
|
|
North latitudes are positive, South latitudes are negative
|
|
Lat and Long are in decimal degrees
|
|
Written by Chuck Gantz- chuck.gantz@globalstar.com"""
|
|
|
|
a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
|
|
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
|
|
k0 = 0.9996
|
|
|
|
# Make sure the longitude is between -180.00 .. 179.9
|
|
LongTemp = (Long + 180) - int((Long + 180) / 360) * 360 - 180 # -180.00 .. 179.9
|
|
|
|
LatRad = Lat * _deg2rad
|
|
LongRad = LongTemp * _deg2rad
|
|
|
|
if zone is None:
|
|
ZoneNumber = int((LongTemp + 180) / 6) + 1
|
|
else:
|
|
ZoneNumber = zone
|
|
|
|
if Lat >= 56.0 and Lat < 64.0 and LongTemp >= 3.0 and LongTemp < 12.0:
|
|
ZoneNumber = 32
|
|
|
|
# Special zones for Svalbard
|
|
if Lat >= 72.0 and Lat < 84.0:
|
|
if LongTemp >= 0.0 and LongTemp < 9.0:
|
|
ZoneNumber = 31
|
|
elif LongTemp >= 9.0 and LongTemp < 21.0:
|
|
ZoneNumber = 33
|
|
elif LongTemp >= 21.0 and LongTemp < 33.0:
|
|
ZoneNumber = 35
|
|
elif LongTemp >= 33.0 and LongTemp < 42.0:
|
|
ZoneNumber = 37
|
|
|
|
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3 # +3 puts origin in middle of zone
|
|
LongOriginRad = LongOrigin * _deg2rad
|
|
|
|
# compute the UTM Zone from the latitude and longitude
|
|
UTMZone = "%d%c" % (ZoneNumber, _UTMLetterDesignator(Lat))
|
|
|
|
eccPrimeSquared = (eccSquared) / (1 - eccSquared)
|
|
N = a / sqrt(1 - eccSquared * sin(LatRad) * sin(LatRad))
|
|
T = tan(LatRad) * tan(LatRad)
|
|
C = eccPrimeSquared * cos(LatRad) * cos(LatRad)
|
|
A = cos(LatRad) * (LongRad - LongOriginRad)
|
|
|
|
M = a * ((1
|
|
- eccSquared / 4
|
|
- 3 * eccSquared * eccSquared / 64
|
|
- 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad
|
|
- (3 * eccSquared / 8
|
|
+ 3 * eccSquared * eccSquared / 32
|
|
+ 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(2 * LatRad)
|
|
+ (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(4 * LatRad)
|
|
- (35 * eccSquared * eccSquared * eccSquared / 3072) * sin(6 * LatRad))
|
|
|
|
UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6
|
|
+ (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120)
|
|
+ 500000.0)
|
|
|
|
UTMNorthing = (k0 * (M + N * tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24
|
|
+ (61
|
|
- 58 * T
|
|
+ T * T
|
|
+ 600 * C
|
|
- 330 * eccPrimeSquared) * A * A * A * A * A * A / 720)))
|
|
|
|
if Lat < 0:
|
|
UTMNorthing = UTMNorthing + 10000000.0; # 10000000 meter offset for southern hemisphere
|
|
return (UTMZone, UTMEasting, UTMNorthing)
|
|
|
|
|
|
def _UTMLetterDesignator(Lat):
|
|
"""This routine determines the correct UTM letter designator for the given
|
|
latitude returns 'Z' if latitude is outside the UTM limits of 84N to 80S
|
|
Written by Chuck Gantz- chuck.gantz@globalstar.com"""
|
|
|
|
if 84 >= Lat >= 72:
|
|
return 'X'
|
|
elif 72 > Lat >= 64:
|
|
return 'W'
|
|
elif 64 > Lat >= 56:
|
|
return 'V'
|
|
elif 56 > Lat >= 48:
|
|
return 'U'
|
|
elif 48 > Lat >= 40:
|
|
return 'T'
|
|
elif 40 > Lat >= 32:
|
|
return 'S'
|
|
elif 32 > Lat >= 24:
|
|
return 'R'
|
|
elif 24 > Lat >= 16:
|
|
return 'Q'
|
|
elif 16 > Lat >= 8:
|
|
return 'P'
|
|
elif 8 > Lat >= 0:
|
|
return 'N'
|
|
elif 0 > Lat >= -8:
|
|
return 'M'
|
|
elif -8 > Lat >= -16:
|
|
return 'L'
|
|
elif -16 > Lat >= -24:
|
|
return 'K'
|
|
elif -24 > Lat >= -32:
|
|
return 'J'
|
|
elif -32 > Lat >= -40:
|
|
return 'H'
|
|
elif -40 > Lat >= -48:
|
|
return 'G'
|
|
elif -48 > Lat >= -56:
|
|
return 'F'
|
|
elif -56 > Lat >= -64:
|
|
return 'E'
|
|
elif -64 > Lat >= -72:
|
|
return 'D'
|
|
elif -72 > Lat >= -80:
|
|
return 'C'
|
|
else:
|
|
return 'Z' # if the Latitude is outside the UTM limits
|
|
|
|
|
|
# void UTMtoLL(int ReferenceEllipsoid, const double UTMNorthing, const double UTMEasting, const char* UTMZone,
|
|
# double& Lat, double& Long )
|
|
|
|
def UTMtoLL(ReferenceEllipsoid, northing, easting, zone):
|
|
"""converts UTM coords to lat/long. Equations from USGS Bulletin 1532
|
|
East Longitudes are positive, West longitudes are negative.
|
|
North latitudes are positive, South latitudes are negative
|
|
Lat and Long are in decimal degrees.
|
|
Written by Chuck Gantz- chuck.gantz@globalstar.com
|
|
Converted to Python by Russ Nelson <nelson@crynwr.com>"""
|
|
|
|
k0 = 0.9996
|
|
a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
|
|
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
|
|
e1 = (1 - sqrt(1 - eccSquared)) / (1 + sqrt(1 - eccSquared))
|
|
# NorthernHemisphere; //1 for northern hemispher, 0 for southern
|
|
|
|
x = easting - 500000.0 # remove 500,000 meter offset for longitude
|
|
y = northing
|
|
|
|
ZoneLetter = zone[-1]
|
|
ZoneNumber = int(zone[:-1])
|
|
if ZoneLetter >= 'N':
|
|
NorthernHemisphere = 1 # point is in northern hemisphere
|
|
else:
|
|
NorthernHemisphere = 0 # point is in southern hemisphere
|
|
y -= 10000000.0 # remove 10,000,000 meter offset used for southern hemisphere
|
|
|
|
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3 # +3 puts origin in middle of zone
|
|
|
|
eccPrimeSquared = (eccSquared) / (1 - eccSquared)
|
|
|
|
M = y / k0
|
|
mu = M / (
|
|
a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256))
|
|
|
|
phi1Rad = (mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * sin(2 * mu)
|
|
+ (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * sin(4 * mu)
|
|
+ (151 * e1 * e1 * e1 / 96) * sin(6 * mu))
|
|
phi1 = phi1Rad * _rad2deg;
|
|
|
|
N1 = a / sqrt(1 - eccSquared * sin(phi1Rad) * sin(phi1Rad))
|
|
T1 = tan(phi1Rad) * tan(phi1Rad)
|
|
C1 = eccPrimeSquared * cos(phi1Rad) * cos(phi1Rad)
|
|
R1 = a * (1 - eccSquared) / pow(1 - eccSquared * sin(phi1Rad) * sin(phi1Rad), 1.5)
|
|
D = x / (N1 * k0)
|
|
|
|
Lat = phi1Rad - (N1 * tan(phi1Rad) / R1) * (
|
|
D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24
|
|
+ (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720)
|
|
Lat = Lat * _rad2deg
|
|
|
|
Long = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (
|
|
5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1)
|
|
* D * D * D * D * D / 120) / cos(phi1Rad)
|
|
Long = LongOrigin + Long * _rad2deg
|
|
return (Lat, Long)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
(z, e, n) = LLtoUTM(23, 45.00, -75.00)
|
|
print z, e, n
|
|
print UTMtoLL(23, n, e, z)
|