initial commit after bringing over cleaned up code and testing some examples

This commit is contained in:
Blake J. Harnden 2017-04-25 08:45:34 -07:00
parent c4858e6e0d
commit 00f4ebf5a9
93 changed files with 15189 additions and 13083 deletions

View file

@ -5,9 +5,9 @@
from math import pi, sin, cos, tan, sqrt
#LatLong- UTM conversion..h
#definitions for lat/long to UTM and UTM to lat/lng conversions
#include <string.h>
# LatLong- UTM conversion..h
# definitions for lat/long to UTM and UTM to lat/lng conversions
# include <string.h>
_deg2rad = pi / 180.0
_rad2deg = 180.0 / pi
@ -16,48 +16,49 @@ _EquatorialRadius = 2
_eccentricitySquared = 3
_ellipsoid = [
# id, Ellipsoid name, Equatorial Radius, square of eccentricity
# first once is a placeholder only, To allow array indices to match id numbers
[ -1, "Placeholder", 0, 0],
[ 1, "Airy", 6377563, 0.00667054],
[ 2, "Australian National", 6378160, 0.006694542],
[ 3, "Bessel 1841", 6377397, 0.006674372],
[ 4, "Bessel 1841 (Nambia] ", 6377484, 0.006674372],
[ 5, "Clarke 1866", 6378206, 0.006768658],
[ 6, "Clarke 1880", 6378249, 0.006803511],
[ 7, "Everest", 6377276, 0.006637847],
[ 8, "Fischer 1960 (Mercury] ", 6378166, 0.006693422],
[ 9, "Fischer 1968", 6378150, 0.006693422],
[ 10, "GRS 1967", 6378160, 0.006694605],
[ 11, "GRS 1980", 6378137, 0.00669438],
[ 12, "Helmert 1906", 6378200, 0.006693422],
[ 13, "Hough", 6378270, 0.00672267],
[ 14, "International", 6378388, 0.00672267],
[ 15, "Krassovsky", 6378245, 0.006693422],
[ 16, "Modified Airy", 6377340, 0.00667054],
[ 17, "Modified Everest", 6377304, 0.006637847],
[ 18, "Modified Fischer 1960", 6378155, 0.006693422],
[ 19, "South American 1969", 6378160, 0.006694542],
[ 20, "WGS 60", 6378165, 0.006693422],
[ 21, "WGS 66", 6378145, 0.006694542],
[ 22, "WGS-72", 6378135, 0.006694318],
[ 23, "WGS-84", 6378137, 0.00669438]
# id, Ellipsoid name, Equatorial Radius, square of eccentricity
# first once is a placeholder only, To allow array indices to match id numbers
[-1, "Placeholder", 0, 0],
[1, "Airy", 6377563, 0.00667054],
[2, "Australian National", 6378160, 0.006694542],
[3, "Bessel 1841", 6377397, 0.006674372],
[4, "Bessel 1841 (Nambia] ", 6377484, 0.006674372],
[5, "Clarke 1866", 6378206, 0.006768658],
[6, "Clarke 1880", 6378249, 0.006803511],
[7, "Everest", 6377276, 0.006637847],
[8, "Fischer 1960 (Mercury] ", 6378166, 0.006693422],
[9, "Fischer 1968", 6378150, 0.006693422],
[10, "GRS 1967", 6378160, 0.006694605],
[11, "GRS 1980", 6378137, 0.00669438],
[12, "Helmert 1906", 6378200, 0.006693422],
[13, "Hough", 6378270, 0.00672267],
[14, "International", 6378388, 0.00672267],
[15, "Krassovsky", 6378245, 0.006693422],
[16, "Modified Airy", 6377340, 0.00667054],
[17, "Modified Everest", 6377304, 0.006637847],
[18, "Modified Fischer 1960", 6378155, 0.006693422],
[19, "South American 1969", 6378160, 0.006694542],
[20, "WGS 60", 6378165, 0.006693422],
[21, "WGS 66", 6378145, 0.006694542],
[22, "WGS-72", 6378135, 0.006694318],
[23, "WGS-84", 6378137, 0.00669438]
]
#Reference ellipsoids derived from Peter H. Dana's website-
#http://www.utexas.edu/depts/grg/gcraft/notes/datum/elist.html
#Department of Geography, University of Texas at Austin
#Internet: pdana@mail.utexas.edu
#3/22/95
#Source
#Defense Mapping Agency. 1987b. DMA Technical Report: Supplement to Department of Defense World Geodetic System
#1984 Technical Report. Part I and II. Washington, DC: Defense Mapping Agency
# Reference ellipsoids derived from Peter H. Dana's website-
# http://www.utexas.edu/depts/grg/gcraft/notes/datum/elist.html
# Department of Geography, University of Texas at Austin
# Internet: pdana@mail.utexas.edu
# 3/22/95
#def LLtoUTM(int ReferenceEllipsoid, const double Lat, const double Long,
# Source
# Defense Mapping Agency. 1987b. DMA Technical Report: Supplement to Department of Defense World Geodetic System
# 1984 Technical Report. Part I and II. Washington, DC: Defense Mapping Agency
# def LLtoUTM(int ReferenceEllipsoid, const double Lat, const double Long,
# double &UTMNorthing, double &UTMEasting, char* UTMZone)
def LLtoUTM(ReferenceEllipsoid, Lat, Long, zone = None):
def LLtoUTM(ReferenceEllipsoid, Lat, Long, zone=None):
"""converts lat/long to UTM coords. Equations from USGS Bulletin 1532
East Longitudes are positive, West longitudes are negative.
North latitudes are positive, South latitudes are negative
@ -68,14 +69,14 @@ def LLtoUTM(ReferenceEllipsoid, Lat, Long, zone = None):
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
k0 = 0.9996
#Make sure the longitude is between -180.00 .. 179.9
LongTemp = (Long+180)-int((Long+180)/360)*360-180 # -180.00 .. 179.9
# Make sure the longitude is between -180.00 .. 179.9
LongTemp = (Long + 180) - int((Long + 180) / 360) * 360 - 180 # -180.00 .. 179.9
LatRad = Lat*_deg2rad
LongRad = LongTemp*_deg2rad
LatRad = Lat * _deg2rad
LongRad = LongTemp * _deg2rad
if zone is None:
ZoneNumber = int((LongTemp + 180)/6) + 1
ZoneNumber = int((LongTemp + 180) / 6) + 1
else:
ZoneNumber = zone
@ -84,46 +85,50 @@ def LLtoUTM(ReferenceEllipsoid, Lat, Long, zone = None):
# Special zones for Svalbard
if Lat >= 72.0 and Lat < 84.0:
if LongTemp >= 0.0 and LongTemp < 9.0:ZoneNumber = 31
elif LongTemp >= 9.0 and LongTemp < 21.0: ZoneNumber = 33
elif LongTemp >= 21.0 and LongTemp < 33.0: ZoneNumber = 35
elif LongTemp >= 33.0 and LongTemp < 42.0: ZoneNumber = 37
if LongTemp >= 0.0 and LongTemp < 9.0:
ZoneNumber = 31
elif LongTemp >= 9.0 and LongTemp < 21.0:
ZoneNumber = 33
elif LongTemp >= 21.0 and LongTemp < 33.0:
ZoneNumber = 35
elif LongTemp >= 33.0 and LongTemp < 42.0:
ZoneNumber = 37
LongOrigin = (ZoneNumber - 1)*6 - 180 + 3 #+3 puts origin in middle of zone
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3 # +3 puts origin in middle of zone
LongOriginRad = LongOrigin * _deg2rad
#compute the UTM Zone from the latitude and longitude
# compute the UTM Zone from the latitude and longitude
UTMZone = "%d%c" % (ZoneNumber, _UTMLetterDesignator(Lat))
eccPrimeSquared = (eccSquared)/(1-eccSquared)
N = a/sqrt(1-eccSquared*sin(LatRad)*sin(LatRad))
T = tan(LatRad)*tan(LatRad)
C = eccPrimeSquared*cos(LatRad)*cos(LatRad)
A = cos(LatRad)*(LongRad-LongOriginRad)
eccPrimeSquared = (eccSquared) / (1 - eccSquared)
N = a / sqrt(1 - eccSquared * sin(LatRad) * sin(LatRad))
T = tan(LatRad) * tan(LatRad)
C = eccPrimeSquared * cos(LatRad) * cos(LatRad)
A = cos(LatRad) * (LongRad - LongOriginRad)
M = a*((1
- eccSquared/4
- 3*eccSquared*eccSquared/64
- 5*eccSquared*eccSquared*eccSquared/256)*LatRad
- (3*eccSquared/8
+ 3*eccSquared*eccSquared/32
+ 45*eccSquared*eccSquared*eccSquared/1024)*sin(2*LatRad)
+ (15*eccSquared*eccSquared/256 + 45*eccSquared*eccSquared*eccSquared/1024)*sin(4*LatRad)
- (35*eccSquared*eccSquared*eccSquared/3072)*sin(6*LatRad))
M = a * ((1
- eccSquared / 4
- 3 * eccSquared * eccSquared / 64
- 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad
- (3 * eccSquared / 8
+ 3 * eccSquared * eccSquared / 32
+ 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(2 * LatRad)
+ (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * sin(4 * LatRad)
- (35 * eccSquared * eccSquared * eccSquared / 3072) * sin(6 * LatRad))
UTMEasting = (k0*N*(A+(1-T+C)*A*A*A/6
+ (5-18*T+T*T+72*C-58*eccPrimeSquared)*A*A*A*A*A/120)
UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6
+ (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120)
+ 500000.0)
UTMNorthing = (k0*(M+N*tan(LatRad)*(A*A/2+(5-T+9*C+4*C*C)*A*A*A*A/24
+ (61
-58*T
+T*T
+600*C
-330*eccPrimeSquared)*A*A*A*A*A*A/720)))
UTMNorthing = (k0 * (M + N * tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24
+ (61
- 58 * T
+ T * T
+ 600 * C
- 330 * eccPrimeSquared) * A * A * A * A * A * A / 720)))
if Lat < 0:
UTMNorthing = UTMNorthing + 10000000.0; #10000000 meter offset for southern hemisphere
UTMNorthing = UTMNorthing + 10000000.0; # 10000000 meter offset for southern hemisphere
return (UTMZone, UTMEasting, UTMNorthing)
@ -132,29 +137,51 @@ def _UTMLetterDesignator(Lat):
latitude returns 'Z' if latitude is outside the UTM limits of 84N to 80S
Written by Chuck Gantz- chuck.gantz@globalstar.com"""
if 84 >= Lat >= 72: return 'X'
elif 72 > Lat >= 64: return 'W'
elif 64 > Lat >= 56: return 'V'
elif 56 > Lat >= 48: return 'U'
elif 48 > Lat >= 40: return 'T'
elif 40 > Lat >= 32: return 'S'
elif 32 > Lat >= 24: return 'R'
elif 24 > Lat >= 16: return 'Q'
elif 16 > Lat >= 8: return 'P'
elif 8 > Lat >= 0: return 'N'
elif 0 > Lat >= -8: return 'M'
elif -8> Lat >= -16: return 'L'
elif -16 > Lat >= -24: return 'K'
elif -24 > Lat >= -32: return 'J'
elif -32 > Lat >= -40: return 'H'
elif -40 > Lat >= -48: return 'G'
elif -48 > Lat >= -56: return 'F'
elif -56 > Lat >= -64: return 'E'
elif -64 > Lat >= -72: return 'D'
elif -72 > Lat >= -80: return 'C'
else: return 'Z' # if the Latitude is outside the UTM limits
if 84 >= Lat >= 72:
return 'X'
elif 72 > Lat >= 64:
return 'W'
elif 64 > Lat >= 56:
return 'V'
elif 56 > Lat >= 48:
return 'U'
elif 48 > Lat >= 40:
return 'T'
elif 40 > Lat >= 32:
return 'S'
elif 32 > Lat >= 24:
return 'R'
elif 24 > Lat >= 16:
return 'Q'
elif 16 > Lat >= 8:
return 'P'
elif 8 > Lat >= 0:
return 'N'
elif 0 > Lat >= -8:
return 'M'
elif -8 > Lat >= -16:
return 'L'
elif -16 > Lat >= -24:
return 'K'
elif -24 > Lat >= -32:
return 'J'
elif -32 > Lat >= -40:
return 'H'
elif -40 > Lat >= -48:
return 'G'
elif -48 > Lat >= -56:
return 'F'
elif -56 > Lat >= -64:
return 'E'
elif -64 > Lat >= -72:
return 'D'
elif -72 > Lat >= -80:
return 'C'
else:
return 'Z' # if the Latitude is outside the UTM limits
#void UTMtoLL(int ReferenceEllipsoid, const double UTMNorthing, const double UTMEasting, const char* UTMZone,
# void UTMtoLL(int ReferenceEllipsoid, const double UTMNorthing, const double UTMEasting, const char* UTMZone,
# double& Lat, double& Long )
def UTMtoLL(ReferenceEllipsoid, northing, easting, zone):
@ -168,10 +195,10 @@ Converted to Python by Russ Nelson <nelson@crynwr.com>"""
k0 = 0.9996
a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
e1 = (1-sqrt(1-eccSquared))/(1+sqrt(1-eccSquared))
#NorthernHemisphere; //1 for northern hemispher, 0 for southern
e1 = (1 - sqrt(1 - eccSquared)) / (1 + sqrt(1 - eccSquared))
# NorthernHemisphere; //1 for northern hemispher, 0 for southern
x = easting - 500000.0 #remove 500,000 meter offset for longitude
x = easting - 500000.0 # remove 500,000 meter offset for longitude
y = northing
ZoneLetter = zone[-1]
@ -180,37 +207,40 @@ Converted to Python by Russ Nelson <nelson@crynwr.com>"""
NorthernHemisphere = 1 # point is in northern hemisphere
else:
NorthernHemisphere = 0 # point is in southern hemisphere
y -= 10000000.0 # remove 10,000,000 meter offset used for southern hemisphere
y -= 10000000.0 # remove 10,000,000 meter offset used for southern hemisphere
LongOrigin = (ZoneNumber - 1)*6 - 180 + 3 # +3 puts origin in middle of zone
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3 # +3 puts origin in middle of zone
eccPrimeSquared = (eccSquared)/(1-eccSquared)
eccPrimeSquared = (eccSquared) / (1 - eccSquared)
M = y / k0
mu = M/(a*(1-eccSquared/4-3*eccSquared*eccSquared/64-5*eccSquared*eccSquared*eccSquared/256))
mu = M / (
a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256))
phi1Rad = (mu + (3*e1/2-27*e1*e1*e1/32)*sin(2*mu)
+ (21*e1*e1/16-55*e1*e1*e1*e1/32)*sin(4*mu)
+(151*e1*e1*e1/96)*sin(6*mu))
phi1 = phi1Rad*_rad2deg;
phi1Rad = (mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * sin(2 * mu)
+ (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * sin(4 * mu)
+ (151 * e1 * e1 * e1 / 96) * sin(6 * mu))
phi1 = phi1Rad * _rad2deg;
N1 = a/sqrt(1-eccSquared*sin(phi1Rad)*sin(phi1Rad))
T1 = tan(phi1Rad)*tan(phi1Rad)
C1 = eccPrimeSquared*cos(phi1Rad)*cos(phi1Rad)
R1 = a*(1-eccSquared)/pow(1-eccSquared*sin(phi1Rad)*sin(phi1Rad), 1.5)
D = x/(N1*k0)
N1 = a / sqrt(1 - eccSquared * sin(phi1Rad) * sin(phi1Rad))
T1 = tan(phi1Rad) * tan(phi1Rad)
C1 = eccPrimeSquared * cos(phi1Rad) * cos(phi1Rad)
R1 = a * (1 - eccSquared) / pow(1 - eccSquared * sin(phi1Rad) * sin(phi1Rad), 1.5)
D = x / (N1 * k0)
Lat = phi1Rad - (N1*tan(phi1Rad)/R1)*(D*D/2-(5+3*T1+10*C1-4*C1*C1-9*eccPrimeSquared)*D*D*D*D/24
+(61+90*T1+298*C1+45*T1*T1-252*eccPrimeSquared-3*C1*C1)*D*D*D*D*D*D/720)
Lat = phi1Rad - (N1 * tan(phi1Rad) / R1) * (
D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24
+ (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720)
Lat = Lat * _rad2deg
Long = (D-(1+2*T1+C1)*D*D*D/6+(5-2*C1+28*T1-3*C1*C1+8*eccPrimeSquared+24*T1*T1)
*D*D*D*D*D/120)/cos(phi1Rad)
Long = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (
5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1)
* D * D * D * D * D / 120) / cos(phi1Rad)
Long = LongOrigin + Long * _rad2deg
return (Lat, Long)
if __name__ == '__main__':
(z, e, n) = LLtoUTM(23, 45.00, -75.00)
print z, e, n
print UTMtoLL(23, n, e, z)