vault backup: 2023-09-19 13:08:23

This commit is contained in:
Alice 2023-09-19 13:08:23 +01:00
parent 4415486b5b
commit 6a435c945d

View file

@ -67,16 +67,16 @@ A formula $F$ is:
> - $\Gamma \models G$ and $\Gamma$ finite iff $\models \land \Gamma \implies G$.
>
- Let $\Gamma = { F_1, F_2, F_3,... }$ be a set of formulas.
- $\Gamma$ is *consistent* or *satisfiable* iff there is an assignment that models $\Gamma$.
- We say that $\Gamma$ is inconsistent or unsatisfiable iff there is not consistent and denote this by $\Gamma \models \bot$.
> [!tip]+ Proposition
> - {$F, \neg F$} \$models \bot$
> - {$F, \neg F$} $\models \bot$
> - If $\Gamma \models \bot$ and $\Gamma \subseteq \Gamma '$, then $\Gamma ' \models \bot$
> - $\Gamma \models F$ iff $\Gamma, \neg F \models \bot$
- Formula
- Formula $G$ is a subformula of formula F if it occurs syntactically within F
- Formula G is a strict subformula of F if G is a subformula of $F$ and $G \neg \equals F$
### 1.2.1 Basic Equivalences
1. $\neg \neg A \equiv A$