my_digital_garden/4a1s/MFES/PL - Aula 8.md

116 lines
5.2 KiB
Markdown
Raw Normal View History

2023-11-14 11:32:32 +00:00
https://why3.lri.fr/try/?name=test.mlw&lang=whyml&code=AN7HpJ4Recall1the4officeyassignment%2F4puzzle2from3Fichaz17r3whereBHz44people1areydistributed%2F0byz35officesl2such2that7vH7s2each4person0is6assignedza4singleVHm2Nuno1and3Pedro0do1not3share0anlHl0If1Ana1hasoo2just1for5herselfV2then0so2doesdHg5Officesyaccomodate%2F0at2most1twouIHHuBuMg0if5running2Why32withXyappropriate%2F1SMT4solverlBH0inuByfollowing%2F1you2will0be2able0to5inspect5counterASA6examplesBH2when6adequate7tBNHHz1s3Modele5problemuI6definingVVypredicate%2FBKuQ5writingza1set0of4axiomsfH0In3orderV5expressc3thirdyrequirement%2F3above7r4defineBHfc7h3alonesyexpressing%2Ful5someoneuMg2onlyBH6occupierXSuVWHEz2s2ShowikTuGuPyinconsistent%2Fu0u3hBKu12goalhHEz3s2Find1outuhfunyproperties%2F4followuDpb7vL7suP3MariaPuKR1One7ruT1sheukukLfu7u7u7u8iTDccuOusuLuMu9lbbXmuSaBL5equally2haveusiiidBMDHz4s5Finallyfyformulate%2Fg3provezau85statingVBLuUuU1onef1mayvG3emptyd1For2thisc3first3writeduvBHuwdVfvAg7nzieAzesuzu%2FvO4anyone7ItBHDz5n5Producefyalternative%2Fyformalization%2F3usingV5insteadvEVVpBLr3logic6functionU3givesvB4uniqueRXXBHuIuIY4Repeat1allk6previous3stepsuXvWVlDN7JoBNNNN4moduleuQNF2typec7yu7781Twos3ThreeHnanu%2Fou%2FsvBsvANHveyhasOffice%2F7nk7orerNH3axiom0A1B7v4forallzprAlV4existszopAjphmoHj0A2BmjorAj7r0o10o2BphhJhln7O3qqm7MzoUqFHfzBBiBfnoqhhiVngqUlgLo7RzqDHVurUbfAZUZbWAoAaap0p1plpJjbikiapkpbngpNFXzCgdPlrWHnzDBnBbk0p20p3ApZRdqXXJakoZqjqqqjqdLnam7XuqqnqsrpNMBvHysanity%2Btest%2Fg3falseuAA3checkuzvk3model3makes3senseAvpHHi0g1BiBZvvvrYv3qHm0g2mPvyrQQ7nhv1nOqvxq7oeBLvvvxAhAhhkvyoiqcqBNDvxvQdzoiif7yazpAoAvxdvQjenijHH3lemmayatMostOneEmpty%2FBjBiXcqBegdoarnXLpbqNN1endBNNNNvnyOffices%2BFn%2FBNDvqinv978vosvoHnTnv%2Bov%2BsOsONHvZhPkSVBpNHvqzBqqjvprhHHv8v4izplAhhcOzooAi7tpvpplpJqfjOlrqrpHFbzCkeWkraNHnzDnBfkvrvqpddoAeAnv8qAqAmqpAqAqgLdnprovprpBpBrnNNDv0vpBhBvpBNHqvxBqnOUv9fXpHlvxBllVkrOkrlprUNHOv27nOiAn7olRzpAoAQQmpUkHHv0v0Blkv0v0qkjeov8rnZLpeqNNv0NNNN
2023-11-13 12:51:23 +00:00
```c
2023-11-14 11:32:32 +00:00
(*
Recall the office assignment puzzle from Ficha 1, where
4 people are distributed by 3 offices, such that:
- each person is assigned a single office
- Nuno and Pedro do not share an office
- If Ana has an office just for herself, then so does Pedro
- Offices accomodate at most two people
Recall that, if running Why3 with an appropriate SMT solver,
in the following you will be able to inspect counter-examples
when adequate.
1. Model the problem by defining an appropriate predicate
and writing a set of axioms.
In order to express the third requirement above, define
a predicate "alone" expressing that someone is the only
occupier of an office.
2. Show that the axioms are not inconsistent by writing an
appropriate goal.
3. Find out if the following properties follow from the axioms:
- If Maria is assigned office One, then she will be
the only occupier of that office.
- If Ana and Nuno share an office, then Maria and Pedro will
equally have to share an office.
4. Finally, formulate and prove a goal stating that
at most one office may be empty. For this, first write a predicate
expressing that an office is empty (i.e. not assigned to anyone).
5. Produce an alternative formalization using, instead of a predicate,
a logic function that gives the unique office assigned to
each person. Repeat all the previous steps with this formalization.
*)
2023-11-13 12:51:23 +00:00
module Offices
type office = One | Two | Three
type person = Ana | Nuno | Pedro | Maria
predicate hasOffice (person) (office)
axiom A1 : forall p:person. exists o:office. hasOffice p o
axiom A2 : forall p:person, o1 o2 : office.
hasOffice p o1 /\ hasOffice p o2 -> o1 = o2
axiom B : forall o1 o2 : office. hasOffice Pedro o1 /\ hasOffice Nuno o2 ->
o1 <> o2
predicate alone (p:person) = forall o:office. forall p1:person.
(hasOffice p o) /\ hasOffice p1 o -> p = p1
axiom C : alone Ana -> alone Pedro
axiom D : forall p1 p2 p3: person, o:office.
hasOffice p1 o /\ hasOffice p2 o /\ hasOffice p3 o ->
p1 = p2 \/ p1 = p3 \/ p3 = p2
goal sanity_test : false (*check if the model makes sense*)
goal g1 : hasOffice Maria One -> alone Maria
goal g2 : forall o1:office. (hasOffice Ana o1 /\ hasOffice Nuno o1) ->
exists o2:office. hasOffice Pedro o2 /\ hasOffice Maria o2
predicate empty (o:office) = forall p:person. not (hasOffice p o)
lemma atMostOneEmpty : forall o1 o2: office. empty o1 /\ empty o2 ->
o1 = o2
end
2023-11-14 11:32:32 +00:00
module Offices_Fn
type office = One | Two | Three
type person = Ana | Nuno | Pedro | Maria
function office (person) : office
axiom B: office Pedro <> office Nuno
predicate alone (p:person) = forall o:office. forall p1:person.
p1 <> p -> office p <> office p1
axiom C: alone Ana -> alone Pedro
axiom D: forall p1 p2 p3: person. p1<>p2 /\ p1<>p3 /\ p2<>p3 ->
office p1 <> office p2 \/ office p1 <> office p3
goal sanity_test : false
goal g1 : office Maria = One -> alone Maria
goal g2 : office Ana = office Nuno -> office Maria = office Pedro
predicate empty (o:office) = forall p:person. office p <> o
lemma atMostOneEmpty : forall o1 o2: office. empty o1 /\ empty o2 ->
o1 = o2
end
2023-11-13 12:51:23 +00:00
```