
Parallelizing Molecular Dynamics (MD) Simulation

Afonso Franco 
Universidade do Minho

Braga, Portugal
pg53595@alunos.uminho.pt

Alice Teixeira
Universidade do Minho

Braga, Portugal
pg52670@alunos.uminho.pt

Abstract— The virtual simulation of physics can of-
ten times be a time-consuming, resource-heavy proce-
dure. In this paper, we utilize the API OpenMP in or-
der to parallelize a molecular dynamics simulation,
evaluating the quality of the results obtained.

Index terms—optimization, programming,
strenght-reduction, loop-invariant code motion, mole-
cular dynamics

I. Introduction

In some scientific fields, the simulation of entities’ behav-
iours is useful since it provides researchers a visual resource
which they may control, facilitating their task of correlat-
ing input data and effects produced. Moreover, the more
complex such simulations progressively become, the more
resource-costly and time-intensive they are potentially ren-
dered. This way, it is crucial that their development is over
viewed under a resource-aware lens. Parellilizing the code
makes use of available cores in order to produce a more time-
efficient computation of the instructions.

A. Paper overview

In this paper we propose the parallelilization of a c pro-
gram provided within the course of Computação Paralela,
taught at University of Minho, which has been modified
with optimization techniques. This simulation represents a
molecular dynamic’s simulation of Argon atoms.

The original code is part of FoleyLab/MolecularDynam-
ics: Simple Molecular Dynamics, which introduces a simu-
lation of particle movements over time by calculating the
force, accelaration and position of the atoms. The calcula-
tions are based on the classical understanding of mechan-
ics and Newton’s laws of movemement, in order to compute
thermodynamic properties of materials.

The parallelized version of the code we present aims to
minimize the time consumed in the computing of this afore-
mentioned simulation. Furthermore, the results obtained
will be analysed in the following sections of this paper.

II. Performance before parellelizing

Our simulation worked with a number of 5000 particles
rendered, and the best sequential time we could achieve was
that of 28.9 seconds. This will be the time utilized when cal-
culating the speedup between sequential and parallel code.

As previously done in phase 1, we used gprof, perf and val-
grind to analyse where the hotspots in our code were. Since,
structurally, the code remained the same as the end results
of phase 1, the hotspots had already been contemplated pre-
viously.

III. OpenMP

We enhanced the efficiency of the “PotentialAndAccel-
eration” function by parallelizing its main loop, responsi-
ble for computing potential energy and acceleration for
5000 particles. We employed a #pragma omp parallel for
reduction(+:Pot, a) to introduce a multi-threaded execu-
tion within the for loop.

The reduction clause ensures the creation of private
copies for the float variable Pot and the accelerations matrix
(a) for each thread. Ultimately, it aggregates the values of
these private variables into the original ones. This strategy
eliminates data races among threads, as each thread oper-
ates on its distinct set of private variables.

This parallel approach surpasses the sequential version
in terms of efficiency by concurrently processing loop itera-
tions, significantly reducing computational time.

IV. Theoretical Results

Utilizing Amdahl’s law, we computed the theoretical
speedup, taking into consideration that the Search cluster,
where our simulation was executed, had a capacity of 40
threads. Given that the code is nearly entirely parallelizable,
the ideal speedup is directly proportional to the number of
threads employed, reaching its maximum potential at 40
threads.
Illustratively:

2 threads result in a 2x speedup
8 threads yield an 8x speedup
40 threads achieve the maximum 40x speedup

mailto:pg53595@alunos.uminho.pt
mailto:pg52670@alunos.uminho.pt


V. Practical Results

To test our code, we ran it multiple times in the Search
cluster given by our university, with an increasing number
of threads on each iteration. We noted down the real time
in seconds necessary for the computing of the code (con-
sultable at Table 1).

Number of threads Real time (s)
1 28.637
2 21.558
4 12.652
8 6.881

10 5.604
12 4.746
14 4.174
16 3.655
18 3.273
20 3.002
22 2.729
24 2.628
26 2.655
28 2.699
30 2.6
32 2.812
34 2.777
36 2.647
38 2.757
40 2.833

Table 1: Timing results

We then calculated the speedup of each iteration, and com-
pared it to the ideal Speedup curve (as can be seen in the
graph bellow).

0

4

8

12

16

20

24

28

32

36

40

1122 44 88 10101214141616181820202222242426262828303032323434363638384040

Sp
ee

du
p

Threads

Real speedup (red) versus ideal speedup (green)

VI. Result Analysis

When comparing the ideal speedup with the real results
we obtained, we can note a difference between the two, as
the realistic results seem to stabilize after 24 threads with re-
sults between 10 to 11 times faster than the serialized code.
This stabilization comes from the exaustion of the memory
bandwidth. After 24 threads it seems that we have saturated
the memory channel, making any threads beyond that have
to wait in a queue longer to receive their data, basically elim-
inating any performance gain.

VII. Conclusion

In conclusion, our endeavor to parallelize a molecular dy-
namics simulation using OpenMP has proven to be success-
ful in significantly reducing computational time. The perfor-
mance improvement achieved demonstrates the effective-
ness of parallelization in optimizing the computing of the
simulation.

The theoretical analysis, based on Amdahl’s law, provided
insight into the potential speedup achievable with the par-
allel approach. However, practical results obtained through
multiple runs on the university’s Search cluster revealed that
the real-world speedup deviated from the ideal projections.
Notably, the performance gains stabilized after employing
24 threads, indicating a saturation point in memory band-
width.

This observation suggests that beyond a certain thresh-
old, additional threads face increased wait times in the data
queue, offsetting the performance benefits. As a result, our
realistic speedup plateaued at approximately 10 to 11 times
faster than the serialized code after 24 threads.

In essence, while the parallelization of the molecular dy-
namics simulation effectively enhanced efficiency, it also
unveiled limitations related to memory bandwidth con-
straints. This finding underscores the importance of con-
sidering hardware constraints when implementing paral-
lel computing solutions. Despite the observed plateau,
the achieved speedup remains a substantial improvement,
showcasing the potential of parallelization techniques in op-
timizing resource-intensive scientific simulations.


	Introduction
	Paper overview

	Performance before parellelizing
	OpenMP
	Theoretical Results
	Practical Results
	Result Analysis
	Conclusion

