OpenMP done
This commit is contained in:
parent
9855bbd327
commit
b84aa107de
3 changed files with 840 additions and 3 deletions
6
Makefile
6
Makefile
|
@ -1,11 +1,11 @@
|
||||||
CC = gcc
|
CC = gcc
|
||||||
SRC = src/
|
SRC = src/
|
||||||
CFLAGS = # none
|
CFLAGS = -march=native -mtune=native -mavx -O2 -ftree-vectorize -fopenmp
|
||||||
|
|
||||||
.DEFAULT_GOAL = MD.exe
|
.DEFAULT_GOAL = MD.exe
|
||||||
|
|
||||||
MD.exe: $(SRC)/MD.cpp
|
MD.exe: $(SRC)/MD2.cpp
|
||||||
$(CC) $(CFLAGS) $(SRC)MD.cpp -lm -march=native -mtune=native -mavx -O2 -ftree-vectorize -funroll-loops -o MD.exe
|
$(CC) $(CFLAGS) $(SRC)MD2.cpp -lm -o MD.exe
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
rm ./MD.exe
|
rm ./MD.exe
|
||||||
|
|
BIN
relatorio.pdf
Normal file
BIN
relatorio.pdf
Normal file
Binary file not shown.
837
src/MD2.cpp
Normal file
837
src/MD2.cpp
Normal file
|
@ -0,0 +1,837 @@
|
||||||
|
/*
|
||||||
|
MD.c - a simple molecular dynamics program for simulating real gas properties
|
||||||
|
of Lennard-Jones particles.
|
||||||
|
|
||||||
|
Copyright (C) 2016 Jonathan J. Foley IV, Chelsea Sweet, Oyewumi Akinfenwa
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Electronic Contact: foleyj10@wpunj.edu
|
||||||
|
Mail Contact: Prof. Jonathan Foley
|
||||||
|
Department of Chemistry, William Paterson University
|
||||||
|
300 Pompton Road
|
||||||
|
Wayne NJ 07470
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <immintrin.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <omp.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
// Readability
|
||||||
|
|
||||||
|
typedef __m256d fourD;
|
||||||
|
typedef __m128d twoD;
|
||||||
|
|
||||||
|
#define load_4d(ptr) _mm256_load_pd(ptr)
|
||||||
|
#define store_4d(ptr, val) _mm256_store_pd(ptr, val)
|
||||||
|
#define store_lower_1d(ptr, val) _mm_store_pd(ptr, val)
|
||||||
|
#define add_4d(a, b) _mm256_add_pd(a, b)
|
||||||
|
#define add_2d(a, b) _mm_add_pd(a, b)
|
||||||
|
#define hadd_4d(a, b) _mm256_hadd_pd(a, b)
|
||||||
|
#define sub_4d(a, b) _mm256_sub_pd(a, b)
|
||||||
|
#define mul_4d(a, b) _mm256_mul_pd(a, b)
|
||||||
|
#define div_4d(a, b) _mm256_div_pd(a, b)
|
||||||
|
#define create_4d(a) _mm256_set1_pd(a)
|
||||||
|
#define get_lower_2d(a) _mm256_castpd256_pd128(a)
|
||||||
|
#define get_upper_2d(a) _mm256_extractf128_pd(a, 1)
|
||||||
|
|
||||||
|
#define ALIGNMENT 32
|
||||||
|
// Number of particles
|
||||||
|
int N;
|
||||||
|
|
||||||
|
// Lennard-Jones parameters in natural units!
|
||||||
|
double sigma = 1.;
|
||||||
|
double epsilon = 1.;
|
||||||
|
double m = 1.;
|
||||||
|
double kB = 1.;
|
||||||
|
double epsilon_8 = epsilon * 8.;
|
||||||
|
|
||||||
|
double NA = 6.022140857e23;
|
||||||
|
double kBSI = 1.38064852e-23; // m^2*kg/(s^2*K)
|
||||||
|
|
||||||
|
// Size of box, which will be specified in natural units
|
||||||
|
double L;
|
||||||
|
|
||||||
|
// Initial Temperature in Natural Units
|
||||||
|
double Tinit; // 2;
|
||||||
|
// Vectors!
|
||||||
|
//
|
||||||
|
const int MAXPART = 5001;
|
||||||
|
// Position
|
||||||
|
double r[MAXPART][3];
|
||||||
|
// Velocity
|
||||||
|
double v[MAXPART][3];
|
||||||
|
// Acceleration
|
||||||
|
double a[MAXPART][3];
|
||||||
|
// Force
|
||||||
|
double F[MAXPART][3];
|
||||||
|
|
||||||
|
// atom type
|
||||||
|
char atype[10];
|
||||||
|
// Function prototypes
|
||||||
|
// initialize positions on simple cubic lattice, also calls function to
|
||||||
|
// initialize velocities
|
||||||
|
void initialize();
|
||||||
|
// update positions and velocities using Velocity Verlet algorithm
|
||||||
|
// print particle coordinates to file for rendering via VMD or other animation
|
||||||
|
// software return 'instantaneous pressure'
|
||||||
|
double VelocityVerlet(double dt, int iter, double *PE, FILE *fp);
|
||||||
|
// Compute Force using F = -dV/dr
|
||||||
|
// solve F = ma for use in Velocity Verlet
|
||||||
|
void computeAccelerations();
|
||||||
|
// Numerical Recipes function for generation gaussian distribution
|
||||||
|
double gaussdist();
|
||||||
|
// Initialize velocities according to user-supplied initial Temperature
|
||||||
|
// (Tinit)
|
||||||
|
void initializeVelocities();
|
||||||
|
// Compute total potential energy from particle coordinates
|
||||||
|
double Potential();
|
||||||
|
// Compute mean squared velocity from particle velocities
|
||||||
|
double MeanSquaredVelocity();
|
||||||
|
// Compute total kinetic energy from particle mass and velocities
|
||||||
|
double Kinetic();
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
|
||||||
|
// variable delcarations
|
||||||
|
int i;
|
||||||
|
double dt, Vol, Temp, Press, Pavg, Tavg, rho;
|
||||||
|
double VolFac, TempFac, PressFac, timefac;
|
||||||
|
double KE, PE, mvs, gc, Z;
|
||||||
|
char trash[10000], prefix[1000], tfn[1000], ofn[1000], afn[1000];
|
||||||
|
FILE *infp, *tfp, *ofp, *afp;
|
||||||
|
|
||||||
|
printf("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
printf(" WELCOME TO WILLY P CHEM MD!\n");
|
||||||
|
printf(" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
printf("\n ENTER A TITLE FOR YOUR CALCULATION!\n");
|
||||||
|
scanf("%s", prefix);
|
||||||
|
strcpy(tfn, prefix);
|
||||||
|
strcat(tfn, "_traj.xyz");
|
||||||
|
strcpy(ofn, prefix);
|
||||||
|
strcat(ofn, "_output.txt");
|
||||||
|
strcpy(afn, prefix);
|
||||||
|
strcat(afn, "_average.txt");
|
||||||
|
|
||||||
|
printf("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
printf(" TITLE ENTERED AS '%s'\n", prefix);
|
||||||
|
printf(" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
|
||||||
|
/* Table of values for Argon relating natural units to SI units:
|
||||||
|
* These are derived from Lennard-Jones parameters from the article
|
||||||
|
* "Liquid argon: Monte carlo and molecular dynamics calculations"
|
||||||
|
* J.A. Barker , R.A. Fisher & R.O. Watts
|
||||||
|
* Mol. Phys., Vol. 21, 657-673 (1971)
|
||||||
|
*
|
||||||
|
* mass: 6.633e-26 kg = one natural unit of mass for
|
||||||
|
*argon, by definition energy: 1.96183e-21 J = one natural unit of
|
||||||
|
*energy for argon, directly from L-J parameters length: 3.3605e-10 m =
|
||||||
|
*one natural unit of length for argon, directly from L-J parameters
|
||||||
|
* volume: 3.79499-29 m^3 = one natural unit of volume for
|
||||||
|
*argon, by length^3 time: 1.951e-12 s = one natural unit of
|
||||||
|
*time for argon, by length*sqrt(mass/energy)
|
||||||
|
***************************************************************************************/
|
||||||
|
|
||||||
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||||
|
// Edit these factors to be computed in terms of basic properties in
|
||||||
|
// natural units of the gas being simulated
|
||||||
|
|
||||||
|
printf("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
printf(" WHICH NOBLE GAS WOULD YOU LIKE TO SIMULATE? (DEFAULT IS ARGON)\n");
|
||||||
|
printf("\n FOR HELIUM, TYPE 'He' THEN PRESS 'return' TO CONTINUE\n");
|
||||||
|
printf(" FOR NEON, TYPE 'Ne' THEN PRESS 'return' TO CONTINUE\n");
|
||||||
|
printf(" FOR ARGON, TYPE 'Ar' THEN PRESS 'return' TO CONTINUE\n");
|
||||||
|
printf(" FOR KRYPTON, TYPE 'Kr' THEN PRESS 'return' TO CONTINUE\n");
|
||||||
|
printf(" FOR XENON, TYPE 'Xe' THEN PRESS 'return' TO CONTINUE\n");
|
||||||
|
printf(" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
scanf("%s", atype);
|
||||||
|
|
||||||
|
if (strcmp(atype, "He") == 0) {
|
||||||
|
|
||||||
|
VolFac = 1.8399744000000005e-29;
|
||||||
|
PressFac = 8152287.336171632;
|
||||||
|
TempFac = 10.864459551225972;
|
||||||
|
timefac = 1.7572698825166272e-12;
|
||||||
|
} else if (strcmp(atype, "Ne") == 0) {
|
||||||
|
|
||||||
|
VolFac = 2.0570823999999997e-29;
|
||||||
|
PressFac = 27223022.27659913;
|
||||||
|
TempFac = 40.560648991243625;
|
||||||
|
timefac = 2.1192341945685407e-12;
|
||||||
|
} else if (strcmp(atype, "Ar") == 0) {
|
||||||
|
|
||||||
|
VolFac = 3.7949992920124995e-29;
|
||||||
|
PressFac = 51695201.06691862;
|
||||||
|
TempFac = 142.0950000000000;
|
||||||
|
timefac = 2.09618e-12;
|
||||||
|
// strcpy(atype,"Ar");
|
||||||
|
} else if (strcmp(atype, "Kr") == 0) {
|
||||||
|
|
||||||
|
VolFac = 4.5882712000000004e-29;
|
||||||
|
PressFac = 59935428.40275003;
|
||||||
|
TempFac = 199.1817584391428;
|
||||||
|
timefac = 8.051563913585078e-13;
|
||||||
|
} else if (strcmp(atype, "Xe") == 0) {
|
||||||
|
|
||||||
|
VolFac = 5.4872e-29;
|
||||||
|
PressFac = 70527773.72794868;
|
||||||
|
TempFac = 280.30305642163006;
|
||||||
|
timefac = 9.018957925790732e-13;
|
||||||
|
} else {
|
||||||
|
|
||||||
|
VolFac = 3.7949992920124995e-29;
|
||||||
|
PressFac = 51695201.06691862;
|
||||||
|
TempFac = 142.0950000000000;
|
||||||
|
timefac = 2.09618e-12;
|
||||||
|
strcpy(atype, "Ar");
|
||||||
|
}
|
||||||
|
printf("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
printf("\n YOU ARE SIMULATING %s GAS! \n", atype);
|
||||||
|
printf("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
|
||||||
|
printf("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
printf("\n YOU WILL NOW ENTER A FEW SIMULATION PARAMETERS\n");
|
||||||
|
printf(" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||||
|
printf("\n\n ENTER THE INTIAL TEMPERATURE OF YOUR GAS IN KELVIN\n");
|
||||||
|
scanf("%lf", &Tinit);
|
||||||
|
// Make sure temperature is a positive number!
|
||||||
|
if (Tinit < 0.) {
|
||||||
|
printf("\n !!!!! ABSOLUTE TEMPERATURE MUST BE A POSITIVE "
|
||||||
|
"NUMBER! PLEASE "
|
||||||
|
"TRY AGAIN WITH A POSITIVE TEMPERATURE!!!\n");
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
// Convert initial temperature from kelvin to natural units
|
||||||
|
Tinit /= TempFac;
|
||||||
|
|
||||||
|
printf("\n\n ENTER THE NUMBER DENSITY IN moles/m^3\n");
|
||||||
|
printf(" FOR REFERENCE, NUMBER DENSITY OF AN IDEAL GAS AT STP IS ABOUT 40 "
|
||||||
|
"moles/m^3\n");
|
||||||
|
printf(" NUMBER DENSITY OF LIQUID ARGON AT 1 ATM AND 87 K IS ABOUT 35000 "
|
||||||
|
"moles/m^3\n");
|
||||||
|
|
||||||
|
scanf("%lf", &rho);
|
||||||
|
|
||||||
|
N = 10 * 500;
|
||||||
|
Vol = N / (rho * NA);
|
||||||
|
|
||||||
|
Vol /= VolFac;
|
||||||
|
|
||||||
|
// Limiting N to MAXPART for practical reasons
|
||||||
|
if (N >= MAXPART) {
|
||||||
|
|
||||||
|
printf("\n\n\n MAXIMUM NUMBER OF PARTICLES IS %i\n\n PLEASE "
|
||||||
|
"ADJUST YOUR "
|
||||||
|
"INPUT FILE ACCORDINGLY \n\n",
|
||||||
|
MAXPART);
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
// Check to see if the volume makes sense - is it too small?
|
||||||
|
// Remember VDW radius of the particles is 1 natural unit of length
|
||||||
|
// and volume = L*L*L, so if V = N*L*L*L = N, then all the particles
|
||||||
|
// will be initialized with an interparticle separation equal to 2xVDW
|
||||||
|
// radius
|
||||||
|
if (Vol < N) {
|
||||||
|
|
||||||
|
printf("\n\n\n YOUR DENSITY IS VERY HIGH!\n\n");
|
||||||
|
printf(" THE NUMBER OF PARTICLES IS %i AND THE AVAILABLE VOLUME "
|
||||||
|
"IS %f "
|
||||||
|
"NATURAL UNITS\n",
|
||||||
|
N, Vol);
|
||||||
|
printf(" SIMULATIONS WITH DENSITY GREATER THAN 1 PARTCICLE/(1 "
|
||||||
|
"Natural "
|
||||||
|
"Unit of Volume) MAY DIVERGE\n");
|
||||||
|
printf(" PLEASE ADJUST YOUR INPUT FILE ACCORDINGLY AND RETRY\n\n");
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
// Vol = L*L*L;
|
||||||
|
// Length of the box in natural units:
|
||||||
|
L = pow(Vol, (1. / 3));
|
||||||
|
|
||||||
|
// Files that we can write different quantities to
|
||||||
|
tfp = fopen(tfn, "w"); // The MD trajectory, coordinates of every
|
||||||
|
// particle at each timestep
|
||||||
|
ofp = fopen(ofn,
|
||||||
|
"w"); // Output of other quantities (T, P, gc, etc) at every timestep
|
||||||
|
afp = fopen(afn, "w"); // Average T, P, gc, etc from the simulation
|
||||||
|
|
||||||
|
int NumTime;
|
||||||
|
if (strcmp(atype, "He") == 0) {
|
||||||
|
|
||||||
|
// dt in natural units of time s.t. in SI it is 5 f.s. for all
|
||||||
|
// other gasses
|
||||||
|
dt = 0.2e-14 / timefac;
|
||||||
|
// We will run the simulation for NumTime timesteps.
|
||||||
|
// The total time will be NumTime*dt in natural units
|
||||||
|
// And NumTime*dt multiplied by the appropriate conversion factor
|
||||||
|
// for time in seconds
|
||||||
|
NumTime = 50000;
|
||||||
|
} else {
|
||||||
|
dt = 0.5e-14 / timefac;
|
||||||
|
NumTime = 200;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Put all the atoms in simple crystal lattice and give them random
|
||||||
|
// velocities that corresponds to the initial temperature we have
|
||||||
|
// specified
|
||||||
|
initialize();
|
||||||
|
|
||||||
|
// Based on their positions, calculate the ininial intermolecular forces
|
||||||
|
// The accellerations of each particle will be defined from the forces and
|
||||||
|
// their mass, and this will allow us to update their positions via
|
||||||
|
// Newton's law
|
||||||
|
computeAccelerations();
|
||||||
|
|
||||||
|
// Print number of particles to the trajectory file
|
||||||
|
fprintf(tfp, "%i\n", N);
|
||||||
|
|
||||||
|
// We want to calculate the average Temperature and Pressure for the
|
||||||
|
// simulation The variables need to be set to zero initially
|
||||||
|
Pavg = 0;
|
||||||
|
Tavg = 0;
|
||||||
|
|
||||||
|
int tenp = floor(NumTime / 10);
|
||||||
|
fprintf(ofp, " time (s) T(t) (K) P(t) (Pa) "
|
||||||
|
"Kinetic En. (n.u.) Potential En. (n.u.) Total En. (n.u.)\n");
|
||||||
|
printf(" PERCENTAGE OF CALCULATION COMPLETE:\n [");
|
||||||
|
for (i = 0; i < NumTime + 1; i++) {
|
||||||
|
|
||||||
|
// This just prints updates on progress of the calculation for the
|
||||||
|
// users convenience
|
||||||
|
if (i == tenp)
|
||||||
|
printf(" 10 |");
|
||||||
|
else if (i == 2 * tenp)
|
||||||
|
printf(" 20 |");
|
||||||
|
else if (i == 3 * tenp)
|
||||||
|
printf(" 30 |");
|
||||||
|
else if (i == 4 * tenp)
|
||||||
|
printf(" 40 |");
|
||||||
|
else if (i == 5 * tenp)
|
||||||
|
printf(" 50 |");
|
||||||
|
else if (i == 6 * tenp)
|
||||||
|
printf(" 60 |");
|
||||||
|
else if (i == 7 * tenp)
|
||||||
|
printf(" 70 |");
|
||||||
|
else if (i == 8 * tenp)
|
||||||
|
printf(" 80 |");
|
||||||
|
else if (i == 9 * tenp)
|
||||||
|
printf(" 90 |");
|
||||||
|
else if (i == 10 * tenp)
|
||||||
|
printf(" 100 ]\n");
|
||||||
|
fflush(stdout);
|
||||||
|
|
||||||
|
// This updates the positions and velocities using Newton's Laws
|
||||||
|
// Also computes the Pressure as the sum of momentum changes from
|
||||||
|
// wall collisions / timestep which is a Kinetic Theory of gasses
|
||||||
|
// concept of Pressure
|
||||||
|
Press = VelocityVerlet(dt, i + 1, &PE, tfp);
|
||||||
|
Press *= PressFac;
|
||||||
|
|
||||||
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||||
|
// Now we would like to calculate somethings about the system:
|
||||||
|
// Instantaneous mean velocity squared, Temperature, Pressure
|
||||||
|
// Potential, and Kinetic Energy
|
||||||
|
// We would also like to use the IGL to try to see if we can
|
||||||
|
// extract the gas constant
|
||||||
|
mvs = MeanSquaredVelocity();
|
||||||
|
KE = Kinetic();
|
||||||
|
|
||||||
|
// Temperature from Kinetic Theory
|
||||||
|
Temp = m * mvs / (3 * kB) * TempFac;
|
||||||
|
|
||||||
|
// Instantaneous gas constant and compressibility - not well
|
||||||
|
// defined because pressure may be zero in some instances because
|
||||||
|
// there will be zero wall collisions, pressure may be very high in
|
||||||
|
// some instances because there will be a number of collisions
|
||||||
|
gc = NA * Press * (Vol * VolFac) / (N * Temp);
|
||||||
|
Z = Press * (Vol * VolFac) / (N * kBSI * Temp);
|
||||||
|
|
||||||
|
Tavg += Temp;
|
||||||
|
Pavg += Press;
|
||||||
|
|
||||||
|
fprintf(ofp, " %8.4e %20.12f %20.12f %20.12f %20.12f %20.12f \n", i * dt * timefac,
|
||||||
|
Temp, Press, KE, PE, KE + PE);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Because we have calculated the instantaneous temperature and pressure,
|
||||||
|
// we can take the average over the whole simulation here
|
||||||
|
Pavg /= NumTime;
|
||||||
|
Tavg /= NumTime;
|
||||||
|
Z = Pavg * (Vol * VolFac) / (N * kBSI * Tavg);
|
||||||
|
gc = NA * Pavg * (Vol * VolFac) / (N * Tavg);
|
||||||
|
fprintf(afp, " Total Time (s) T (K) P (Pa) PV/nT "
|
||||||
|
"(J/(mol K)) Z V (m^3) N\n");
|
||||||
|
fprintf(afp, " -------------- ----------- --------------- "
|
||||||
|
"-------------- --------------- ------------ -----------\n");
|
||||||
|
fprintf(afp,
|
||||||
|
" %8.4e %15.5f %15.5f %10.5f %10.5f %10.5e "
|
||||||
|
" %i\n",
|
||||||
|
i * dt * timefac, Tavg, Pavg, gc, Z, Vol * VolFac, N);
|
||||||
|
|
||||||
|
printf("\n TO ANIMATE YOUR SIMULATION, OPEN THE FILE \n '%s' WITH VMD "
|
||||||
|
"AFTER THE SIMULATION COMPLETES\n",
|
||||||
|
tfn);
|
||||||
|
printf("\n TO ANALYZE INSTANTANEOUS DATA ABOUT YOUR MOLECULE, OPEN THE FILE "
|
||||||
|
"\n "
|
||||||
|
" '%s' WITH YOUR FAVORITE TEXT EDITOR OR IMPORT THE DATA INTO EXCEL\n",
|
||||||
|
ofn);
|
||||||
|
printf("\n THE FOLLOWING THERMODYNAMIC AVERAGES WILL BE COMPUTED AND "
|
||||||
|
"WRITTEN TO THE FILE \n '%s':\n",
|
||||||
|
afn);
|
||||||
|
printf("\n AVERAGE TEMPERATURE (K): %15.5f\n", Tavg);
|
||||||
|
printf("\n AVERAGE PRESSURE (Pa): %15.5f\n", Pavg);
|
||||||
|
printf("\n PV/nT (J * mol^-1 K^-1): %15.5f\n", gc);
|
||||||
|
printf("\n PERCENT ERROR of pV/nT AND GAS CONSTANT: %15.5f\n",
|
||||||
|
100 * fabs(gc - 8.3144598) / 8.3144598);
|
||||||
|
printf("\n THE COMPRESSIBILITY (unitless): %15.5f \n", Z);
|
||||||
|
printf("\n TOTAL VOLUME (m^3): %10.5e \n", Vol * VolFac);
|
||||||
|
printf("\n NUMBER OF PARTICLES (unitless): %i \n", N);
|
||||||
|
|
||||||
|
fclose(tfp);
|
||||||
|
fclose(ofp);
|
||||||
|
fclose(afp);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void initialize() {
|
||||||
|
int n, p, i, j, k;
|
||||||
|
double pos;
|
||||||
|
|
||||||
|
// Number of atoms in each direction
|
||||||
|
n = int(ceil(pow(N, 1.0 / 3)));
|
||||||
|
|
||||||
|
// spacing between atoms along a given direction
|
||||||
|
pos = L / n;
|
||||||
|
|
||||||
|
// index for number of particles assigned positions
|
||||||
|
p = 0;
|
||||||
|
// initialize positions
|
||||||
|
for (i = 0; i < n; i++) {
|
||||||
|
for (j = 0; j < n; j++) {
|
||||||
|
for (k = 0; k < n; k++) {
|
||||||
|
if (p < N) {
|
||||||
|
|
||||||
|
r[p][0] = (i + 0.5) * pos;
|
||||||
|
r[p][1] = (j + 0.5) * pos;
|
||||||
|
r[p][2] = (k + 0.5) * pos;
|
||||||
|
}
|
||||||
|
p++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Call function to initialize velocities
|
||||||
|
initializeVelocities();
|
||||||
|
|
||||||
|
/***********************************************
|
||||||
|
* Uncomment if you want to see what the initial positions and velocities
|
||||||
|
are printf(" Printing initial positions!\n"); for (i=0; i<N; i++) {
|
||||||
|
printf(" %6.3e %6.3e %6.3e\n",r[i][0],r[i][1],r[i][2]);
|
||||||
|
}
|
||||||
|
|
||||||
|
printf(" Printing initial velocities!\n");
|
||||||
|
for (i=0; i<N; i++) {
|
||||||
|
printf(" %6.3e %6.3e %6.3e\n",v[i][0],v[i][1],v[i][2]);
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function to calculate the averaged velocity squared
|
||||||
|
double MeanSquaredVelocity() {
|
||||||
|
|
||||||
|
double vx2 = 0;
|
||||||
|
double vy2 = 0;
|
||||||
|
double vz2 = 0;
|
||||||
|
double v2;
|
||||||
|
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
|
||||||
|
vx2 = vx2 + v[i][0] * v[i][0];
|
||||||
|
vy2 = vy2 + v[i][1] * v[i][1];
|
||||||
|
vz2 = vz2 + v[i][2] * v[i][2];
|
||||||
|
}
|
||||||
|
v2 = (vx2 + vy2 + vz2) / N;
|
||||||
|
|
||||||
|
// printf(" Average of x-component of velocity squared is %f\n",v2);
|
||||||
|
return v2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function to calculate the kinetic energy of the system
|
||||||
|
double Kinetic() { // Write Function here!
|
||||||
|
|
||||||
|
double v2, kin;
|
||||||
|
|
||||||
|
kin = 0.;
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
|
||||||
|
v2 = 0.;
|
||||||
|
for (int j = 0; j < 3; j++) {
|
||||||
|
|
||||||
|
v2 += v[i][j] * v[i][j];
|
||||||
|
}
|
||||||
|
kin += m * v2 / 2.;
|
||||||
|
}
|
||||||
|
|
||||||
|
// printf(" Total Kinetic Energy is %f\n",N*mvs*m/2.);
|
||||||
|
return kin;
|
||||||
|
}
|
||||||
|
|
||||||
|
void transposeMatrix(double mat[MAXPART][3], double matT[3][MAXPART]) {
|
||||||
|
for (int i = 0; i < 3; i++) {
|
||||||
|
for (int j = 0; j < MAXPART; j++) {
|
||||||
|
matT[i][j] = mat[j][i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void transposeMatrix2(double matT[MAXPART][3], double mat[3][MAXPART]) {
|
||||||
|
for (int i = 0; i < MAXPART; i++) {
|
||||||
|
for (int j = 0; j < 3; j++) {
|
||||||
|
matT[i][j] = mat[j][i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// double PotentialAndAccelerationSIMD(double dt) {
|
||||||
|
// for (int i = 0; i < N; i++) {
|
||||||
|
// for (int j = 0; j < 3; j++)
|
||||||
|
// a[i][j] = 0.;
|
||||||
|
// }
|
||||||
|
// double Pot = 0.;
|
||||||
|
//
|
||||||
|
// for (int i = 0; i < N; i++) {
|
||||||
|
//
|
||||||
|
// fourD rij4[4];
|
||||||
|
// memset(rij4, 0, sizeof(rij4));
|
||||||
|
// double *dist = (double *)_mm_malloc(4 * sizeof(double), ALIGNMENT);
|
||||||
|
// memset(dist, 0, sizeof(double) * 4);
|
||||||
|
// //__m256i mask =
|
||||||
|
// //_mm256_setr_epi64x(0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0);
|
||||||
|
//
|
||||||
|
// for (int j = i + 1; j < N; j += 4) {
|
||||||
|
// fourD ri = load_4d(r[i]);
|
||||||
|
// int numParts = fmin(4, N - j);
|
||||||
|
// for (int k = 0; k < numParts; k++) {
|
||||||
|
// if (j + k >= N) {
|
||||||
|
// break;
|
||||||
|
// }
|
||||||
|
// double quot, rnorm, term1, term2;
|
||||||
|
//
|
||||||
|
// fourD rj = load_4d(r[j + k]);
|
||||||
|
// fourD rij = sub_4d(ri, rj);
|
||||||
|
// fourD distTmp = mul_4d(rij, rij);
|
||||||
|
// rij4[k] = rij;
|
||||||
|
//
|
||||||
|
// fourD temp = hadd_4d(distTmp, distTmp);
|
||||||
|
// twoD lo = get_lower_2d(temp);
|
||||||
|
// twoD hi = get_upper_2d(temp);
|
||||||
|
// twoD sum = add_2d(lo, hi);
|
||||||
|
//
|
||||||
|
// // Convert the scalar result to a double
|
||||||
|
// double finalSum;
|
||||||
|
// store_lower_1d(&dist[k], sum);
|
||||||
|
// }
|
||||||
|
// fourD dists = load_4d(dist);
|
||||||
|
// fourD quot = div_4d(create_4d(sigma * sigma), dists);
|
||||||
|
// fourD term2 = mul_4d(quot, mul_4d(quot, quot));
|
||||||
|
// fourD Pots = mul_4d(create_4d(epsilon_8), mul_4d(term2, sub_4d(term2, create_4d(1.))));
|
||||||
|
// // Perform horizontal addition and store the result in a scalar
|
||||||
|
// fourD temp = hadd_4d(Pots, Pots);
|
||||||
|
// twoD lo = get_lower_2d(temp);
|
||||||
|
// twoD hi = get_upper_2d(temp);
|
||||||
|
// twoD sum = add_2d(lo, hi);
|
||||||
|
//
|
||||||
|
// // Convert the scalar result to a double
|
||||||
|
// double finalSum;
|
||||||
|
// store_lower_1d(&finalSum, sum);
|
||||||
|
// Pot += finalSum;
|
||||||
|
//
|
||||||
|
// fourD distSqd = mul_4d(dists, mul_4d(dists, dists));
|
||||||
|
// fourD rSqd_inv7 = mul_4d(distSqd, mul_4d(distSqd, dists));
|
||||||
|
// fourD f8 = div_4d(sub_4d(create_4d(48.), mul_4d(create_4d(24.), distSqd)), rSqd_inv7);
|
||||||
|
//
|
||||||
|
// // Go back to the original loop
|
||||||
|
// for (int k = 0; k < numParts; k++) {
|
||||||
|
// if (j + k >= N) {
|
||||||
|
// break;
|
||||||
|
// }
|
||||||
|
// fourD tmp = mul_4d(rij4[k], create_4d(f8[k]));
|
||||||
|
// fourD aI = load_4d(a[i]);
|
||||||
|
// fourD aJ = load_4d(a[j + k]);
|
||||||
|
// fourD sum = add_4d(aI, tmp);
|
||||||
|
// fourD sub = sub_4d(aJ, tmp);
|
||||||
|
// store_4d(a[i], sum);
|
||||||
|
// store_4d(a[j + k], sub);
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// //}
|
||||||
|
//
|
||||||
|
// return Pot;
|
||||||
|
// }
|
||||||
|
|
||||||
|
double PotentialAndAcceleration(double dt) {
|
||||||
|
memset(a, 0, sizeof(a));
|
||||||
|
double Pot = 0.;
|
||||||
|
# pragma omp parallel for reduction(+:Pot,a)
|
||||||
|
for (int i = 0; i < N - 1; i++) {
|
||||||
|
double ai0 = 0., ai1 = 0., ai2 = 0.;
|
||||||
|
double rI[3] = {r[i][0], r[i][1], r[i][2]};
|
||||||
|
for (int j = i + 1; j < N; j++) {
|
||||||
|
double quot, term2;
|
||||||
|
// component-by-componenent position of i relative to j
|
||||||
|
double rij[3];
|
||||||
|
// sum of squares of the components
|
||||||
|
double rSqd = 0.;
|
||||||
|
|
||||||
|
for (int k = 0; k < 3; k++) {
|
||||||
|
double rijk = rI[k] - r[j][k];
|
||||||
|
|
||||||
|
rij[k] = rijk;
|
||||||
|
|
||||||
|
rSqd += rijk * rijk;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Here we remove the pow function and simplify the calculation
|
||||||
|
double rSqd_3 = rSqd * rSqd * rSqd;
|
||||||
|
double rSqd_7 = rSqd_3 * rSqd_3 * rSqd;
|
||||||
|
double f = (48. - (24. * rSqd_3)) / rSqd_7;
|
||||||
|
// from F = ma, where m = 1 in natural units!
|
||||||
|
double tmp = rij[0] * f;
|
||||||
|
double tmp1 = rij[1] * f;
|
||||||
|
double tmp2 = rij[2] * f;
|
||||||
|
ai0 += tmp;
|
||||||
|
ai1 += tmp1;
|
||||||
|
ai2 += tmp2;
|
||||||
|
a[j][0] -= tmp;
|
||||||
|
a[j][1] -= tmp1;
|
||||||
|
a[j][2] -= tmp2;
|
||||||
|
|
||||||
|
quot = sigma * sigma / rSqd;
|
||||||
|
term2 = quot * quot * quot;
|
||||||
|
Pot += term2 * (term2 - 1.);
|
||||||
|
}
|
||||||
|
a[i][0] += ai0;
|
||||||
|
a[i][1] += ai1;
|
||||||
|
a[i][2] += ai2;
|
||||||
|
}
|
||||||
|
return Pot*epsilon_8;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function to calculate the potential energy of the system
|
||||||
|
double Potential() {
|
||||||
|
double quot, rSqd, rnorm, term1, term2, Pot;
|
||||||
|
int i, j;
|
||||||
|
|
||||||
|
Pot = 0.;
|
||||||
|
|
||||||
|
for (i = 0; i < N - 1; i++) {
|
||||||
|
for (j = i + 1; j < N; j++) {
|
||||||
|
rSqd = 0.;
|
||||||
|
double rI[3] = {r[i][0], r[i][1], r[i][2]};
|
||||||
|
for (int k = 0; k < 3; k++) {
|
||||||
|
double rijk = rI[k] - r[j][k];
|
||||||
|
rSqd += rijk * rijk;
|
||||||
|
}
|
||||||
|
|
||||||
|
quot = sigma * sigma / rSqd;
|
||||||
|
term2 = quot * quot * quot;
|
||||||
|
Pot += epsilon_8 * term2 * (term2 - 1.);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return Pot;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Uses the derivative of the Lennard-Jones potential to calculate
|
||||||
|
// the forces on each atom. Then uses a = F/m to calculate the
|
||||||
|
// accelleration of each atom.
|
||||||
|
void computeAccelerations() {
|
||||||
|
double f, rSqd, tmp = 0.;
|
||||||
|
memset(a, 0, sizeof(a));
|
||||||
|
|
||||||
|
for (int i = 0; i < N - 1; i++) { // loop over all distinct pairs i,j
|
||||||
|
double rI[3] = {r[i][0], r[i][1], r[i][2]};
|
||||||
|
for (int j = i + 1; j < N; j++) {
|
||||||
|
// component-by-componenent position of i relative to j
|
||||||
|
double rij[3];
|
||||||
|
// sum of squares of the components
|
||||||
|
double rSqd = 0.;
|
||||||
|
|
||||||
|
for (int k = 0; k < 3; k++) {
|
||||||
|
double rijk = rI[k] - r[j][k];
|
||||||
|
|
||||||
|
rij[k] = rijk;
|
||||||
|
|
||||||
|
rSqd += rijk * rijk;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Here we remove the pow function and simplify the calculation
|
||||||
|
double rSqd_3 = rSqd * rSqd * rSqd;
|
||||||
|
double rSqd_7 = rSqd_3 * rSqd_3 * rSqd;
|
||||||
|
double f = (48. - (24. * rSqd_3)) / rSqd_7;
|
||||||
|
// from F = ma, where m = 1 in natural units!
|
||||||
|
for (int k = 0; k < 3; k++) {
|
||||||
|
double tmp = rij[k] * f;
|
||||||
|
a[i][k] += tmp;
|
||||||
|
a[j][k] -= tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// returns sum of dv/dt*m/A (aka Pressure) from elastic collisions with walls
|
||||||
|
double VelocityVerlet(double dt, int iter, double *PE, FILE *fp) {
|
||||||
|
int i, j, k;
|
||||||
|
|
||||||
|
double psum = 0.;
|
||||||
|
|
||||||
|
// Compute accelerations from forces at current position
|
||||||
|
// this call was removed (commented) for predagogical reasons
|
||||||
|
// computeAccelerations();
|
||||||
|
// Update positions and velocity with current velocity and acceleration
|
||||||
|
// printf(" Updated Positions!\n");
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
double tmp = 0.5 * a[i][j] * dt;
|
||||||
|
r[i][j] += v[i][j] * dt + tmp * dt;
|
||||||
|
|
||||||
|
v[i][j] += tmp;
|
||||||
|
}
|
||||||
|
// printf(" %i %6.4e %6.4e %6.4e\n",i,r[i][0],r[i][1],r[i][2]);
|
||||||
|
}
|
||||||
|
// Update accellerations from updated positions
|
||||||
|
// computeAccelerations ();
|
||||||
|
*PE = PotentialAndAcceleration(dt);
|
||||||
|
// Update velocity with updated acceleration
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
v[i][j] += 0.5 * a[i][j] * dt;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Elastic walls
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
if (r[i][j] < 0.) {
|
||||||
|
v[i][j] *= -1.; //- elastic walls
|
||||||
|
psum += 2 * m * fabs(v[i][j]) / dt; // contribution to pressure
|
||||||
|
// from "left" walls
|
||||||
|
}
|
||||||
|
if (r[i][j] >= L) {
|
||||||
|
v[i][j] *= -1.; //- elastic walls
|
||||||
|
psum += 2 * m * fabs(v[i][j]) / dt; // contribution to pressure
|
||||||
|
// from "right" walls
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* removed, uncomment to save atoms positions */
|
||||||
|
/*for (i=0; i<N; i++) {
|
||||||
|
fprintf(fp,"%s",atype);
|
||||||
|
for (j=0; j<3; j++) {
|
||||||
|
fprintf(fp," %12.10e ",r[i][j]);
|
||||||
|
}
|
||||||
|
fprintf(fp,"\n");
|
||||||
|
}*/
|
||||||
|
// fprintf(fp,"\n \n");
|
||||||
|
|
||||||
|
return psum / (6 * L * L);
|
||||||
|
}
|
||||||
|
|
||||||
|
void initializeVelocities() {
|
||||||
|
|
||||||
|
int i, j;
|
||||||
|
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
// Pull a number from a Gaussian Distribution
|
||||||
|
v[i][j] = gaussdist();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Vcm = sum_i^N m*v_i/ sum_i^N M
|
||||||
|
// Compute center-of-mas velocity according to the formula above
|
||||||
|
double vCM[3] = {0, 0, 0};
|
||||||
|
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
|
||||||
|
vCM[j] += m * v[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = 0; i < 3; i++)
|
||||||
|
vCM[i] /= N * m;
|
||||||
|
|
||||||
|
// Subtract out the center-of-mass velocity from the
|
||||||
|
// velocity of each particle... effectively set the
|
||||||
|
// center of mass velocity to zero so that the system does
|
||||||
|
// not drift in space!
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
|
||||||
|
v[i][j] -= vCM[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Now we want to scale the average velocity of the system
|
||||||
|
// by a factor which is consistent with our initial temperature, Tinit
|
||||||
|
double vSqdSum, lambda;
|
||||||
|
vSqdSum = 0.;
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
|
||||||
|
vSqdSum += v[i][j] * v[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
lambda = sqrt(3 * (N - 1) * Tinit / vSqdSum);
|
||||||
|
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
|
||||||
|
v[i][j] *= lambda;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Numerical recipes Gaussian distribution number generator
|
||||||
|
double gaussdist() {
|
||||||
|
static bool available = false;
|
||||||
|
static double gset;
|
||||||
|
double fac, rsq, v1, v2;
|
||||||
|
if (!available) {
|
||||||
|
do {
|
||||||
|
v1 = 2.0 * rand() / double(RAND_MAX) - 1.0;
|
||||||
|
v2 = 2.0 * rand() / double(RAND_MAX) - 1.0;
|
||||||
|
rsq = v1 * v1 + v2 * v2;
|
||||||
|
} while (rsq >= 1.0 || rsq == 0.0);
|
||||||
|
|
||||||
|
fac = sqrt(-2.0 * log(rsq) / rsq);
|
||||||
|
gset = v1 * fac;
|
||||||
|
available = true;
|
||||||
|
|
||||||
|
return v2 * fac;
|
||||||
|
} else {
|
||||||
|
|
||||||
|
available = false;
|
||||||
|
return gset;
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in a new issue