Removed Sqrt function and optimized multiplications

This commit is contained in:
Afonso Franco 2023-10-16 19:29:22 +01:00
parent 44e386f674
commit 4c27b3c774
Signed by: afonso
SSH key fingerprint: SHA256:JiuxZNdA5bRWXPMUJChI0AQ75yC+cXY4xM0IaVwEVys
9 changed files with 626 additions and 268 deletions

View file

@ -38,6 +38,7 @@ double sigma = 1.;
double epsilon = 1.;
double m = 1.;
double kB = 1.;
double epsilon_8 = epsilon * 8.;
double NA = 6.022140857e23;
double kBSI = 1.38064852e-23; // m^2*kg/(s^2*K)
@ -95,11 +96,9 @@ main () {
char trash[10000], prefix[1000], tfn[1000], ofn[1000], afn[1000];
FILE *infp, *tfp, *ofp, *afp;
printf (
"\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (" WELCOME TO WILLY P CHEM MD!\n");
printf (
" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n ENTER A TITLE FOR YOUR CALCULATION!\n");
scanf ("%s", prefix);
strcpy (tfn, prefix);
@ -109,11 +108,9 @@ main () {
strcpy (afn, prefix);
strcat (afn, "_average.txt");
printf (
"\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (" TITLE ENTERED AS '%s'\n", prefix);
printf (
" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
/* Table of values for Argon relating natural units to SI units:
* These are derived from Lennard-Jones parameters from the article
@ -134,17 +131,14 @@ main () {
// Edit these factors to be computed in terms of basic properties in
// natural units of the gas being simulated
printf (
"\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (
" WHICH NOBLE GAS WOULD YOU LIKE TO SIMULATE? (DEFAULT IS ARGON)\n");
printf ("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (" WHICH NOBLE GAS WOULD YOU LIKE TO SIMULATE? (DEFAULT IS ARGON)\n");
printf ("\n FOR HELIUM, TYPE 'He' THEN PRESS 'return' TO CONTINUE\n");
printf (" FOR NEON, TYPE 'Ne' THEN PRESS 'return' TO CONTINUE\n");
printf (" FOR ARGON, TYPE 'Ar' THEN PRESS 'return' TO CONTINUE\n");
printf (" FOR KRYPTON, TYPE 'Kr' THEN PRESS 'return' TO CONTINUE\n");
printf (" FOR XENON, TYPE 'Xe' THEN PRESS 'return' TO CONTINUE\n");
printf (
" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
scanf ("%s", atype);
if (strcmp (atype, "He") == 0) {
@ -186,17 +180,13 @@ main () {
timefac = 2.09618e-12;
strcpy (atype, "Ar");
}
printf (
"\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n YOU ARE SIMULATING %s GAS! \n", atype);
printf (
"\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (
"\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n YOU WILL NOW ENTER A FEW SIMULATION PARAMETERS\n");
printf (
" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf (" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
printf ("\n\n ENTER THE INTIAL TEMPERATURE OF YOUR GAS IN KELVIN\n");
scanf ("%lf", &Tinit);
// Make sure temperature is a positive number!
@ -210,12 +200,10 @@ main () {
Tinit /= TempFac;
printf ("\n\n ENTER THE NUMBER DENSITY IN moles/m^3\n");
printf (
" FOR REFERENCE, NUMBER DENSITY OF AN IDEAL GAS AT STP IS ABOUT 40 "
"moles/m^3\n");
printf (
" NUMBER DENSITY OF LIQUID ARGON AT 1 ATM AND 87 K IS ABOUT 35000 "
"moles/m^3\n");
printf (" FOR REFERENCE, NUMBER DENSITY OF AN IDEAL GAS AT STP IS ABOUT 40 "
"moles/m^3\n");
printf (" NUMBER DENSITY OF LIQUID ARGON AT 1 ATM AND 87 K IS ABOUT 35000 "
"moles/m^3\n");
scanf ("%lf", &rho);
@ -258,9 +246,8 @@ main () {
// Files that we can write different quantities to
tfp = fopen (tfn, "w"); // The MD trajectory, coordinates of every
// particle at each timestep
ofp = fopen (
ofn,
"w"); // Output of other quantities (T, P, gc, etc) at every timestep
ofp = fopen (ofn,
"w"); // Output of other quantities (T, P, gc, etc) at every timestep
afp = fopen (afn, "w"); // Average T, P, gc, etc from the simulation
int NumTime;
@ -299,10 +286,8 @@ main () {
Tavg = 0;
int tenp = floor (NumTime / 10);
fprintf (
ofp,
" time (s) T(t) (K) P(t) (Pa) "
"Kinetic En. (n.u.) Potential En. (n.u.) Total En. (n.u.)\n");
fprintf (ofp, " time (s) T(t) (K) P(t) (Pa) "
"Kinetic En. (n.u.) Potential En. (n.u.) Total En. (n.u.)\n");
printf (" PERCENTAGE OF CALCULATION COMPLETE:\n [");
for (i = 0; i < NumTime + 1; i++) {
@ -359,8 +344,8 @@ main () {
Tavg += Temp;
Pavg += Press;
fprintf (ofp, " %8.4e %20.12f %20.12f %20.12f %20.12f %20.12f \n",
i * dt * timefac, Temp, Press, KE, PE, KE + PE);
fprintf (ofp, " %8.4e %20.12f %20.12f %20.12f %20.12f %20.12f \n", i * dt * timefac,
Temp, Press, KE, PE, KE + PE);
}
// Because we have calculated the instantaneous temperature and pressure,
@ -369,27 +354,22 @@ main () {
Tavg /= NumTime;
Z = Pavg * (Vol * VolFac) / (N * kBSI * Tavg);
gc = NA * Pavg * (Vol * VolFac) / (N * Tavg);
fprintf (afp, " Total Time (s) T (K) P (Pa) PV/nT "
"(J/(mol K)) Z V (m^3) N\n");
fprintf (afp, " -------------- ----------- --------------- "
"-------------- --------------- ------------ -----------\n");
fprintf (afp,
" Total Time (s) T (K) P (Pa) PV/nT "
"(J/(mol K)) Z V (m^3) N\n");
fprintf (
afp,
" -------------- ----------- --------------- "
"-------------- --------------- ------------ -----------\n");
fprintf (
afp,
" %8.4e %15.5f %15.5f %10.5f %10.5f %10.5e "
" %i\n",
i * dt * timefac, Tavg, Pavg, gc, Z, Vol * VolFac, N);
" %8.4e %15.5f %15.5f %10.5f %10.5f %10.5e "
" %i\n",
i * dt * timefac, Tavg, Pavg, gc, Z, Vol * VolFac, N);
printf ("\n TO ANIMATE YOUR SIMULATION, OPEN THE FILE \n '%s' WITH VMD "
"AFTER THE SIMULATION COMPLETES\n",
tfn);
printf (
"\n TO ANALYZE INSTANTANEOUS DATA ABOUT YOUR MOLECULE, OPEN THE FILE "
"\n "
" '%s' WITH YOUR FAVORITE TEXT EDITOR OR IMPORT THE DATA INTO EXCEL\n",
ofn);
printf ("\n TO ANALYZE INSTANTANEOUS DATA ABOUT YOUR MOLECULE, OPEN THE FILE "
"\n "
" '%s' WITH YOUR FAVORITE TEXT EDITOR OR IMPORT THE DATA INTO EXCEL\n",
ofn);
printf ("\n THE FOLLOWING THERMODYNAMIC AVERAGES WILL BE COMPUTED AND "
"WRITTEN TO THE FILE \n '%s':\n",
afn);
@ -399,8 +379,7 @@ main () {
printf ("\n PERCENT ERROR of pV/nT AND GAS CONSTANT: %15.5f\n",
100 * fabs (gc - 8.3144598) / 8.3144598);
printf ("\n THE COMPRESSIBILITY (unitless): %15.5f \n", Z);
printf ("\n TOTAL VOLUME (m^3): %10.5e \n",
Vol * VolFac);
printf ("\n TOTAL VOLUME (m^3): %10.5e \n", Vol * VolFac);
printf ("\n NUMBER OF PARTICLES (unitless): %i \n", N);
fclose (tfp);
@ -495,50 +474,57 @@ Kinetic () { // Write Function here!
// printf(" Total Kinetic Energy is %f\n",N*mvs*m/2.);
return kin;
}
double
getF (double dist) {}
double
getLocalPot (double dist) {}
// void
// transposeMatrix (double mat[MAXPART][3], double matT[3][MAXPART]) {
// for (int i = 0; i < 3; i++) {
// for (int j = 0; j < MAXPART; j++) {
// matT[i][j] = mat[j][i];
// }
// }
// }
double
PotentialAndAcceleration () {
double quot, rnorm, term1, term2, Pot;
int i, j, k;
double f, dist, tmp = 0.;
double distTmp = 0;
double posItoJ[3]; // position of i relative to j
double epsilon_8 = 8. * epsilon;
memset (a, 0, sizeof (a));
double Pot = 0.;
// double rT[3][MAXPART];
// transposeMatrix (r, rT);
Pot = 0.;
for (i = 0; i < N - 1; i++) {
for (j = i + 1; j < N; j++) {
for (int i = 0; i < N - 1; i++) {
for (int j = i + 1; j < N; j++) {
double quot, rnorm, term1, term2;
// CALCULATE POTENTIAL ENERGY
dist = 0.;
distTmp = 0;
double dist = 0.;
double posItoJ[3]; // position of i relative to j
for (int k = 0; k < 3; k++) {
// POT
distTmp = r[i][k] - r[j][k];
double distTmp = r[i][k] - r[j][k];
dist += distTmp * distTmp;
// ACCEL
posItoJ[k] = distTmp;
}
quot = sigma / sqrt (dist);
term2 = quot * quot;
term2 = term2 * term2 * term2;
term1 = term2 * term2;
Pot += 8 * epsilon * (term1 - term2);
quot = sigma * sigma / dist;
term2 = quot * quot * quot;
Pot += epsilon_8 * term2 * (term2 - 1);
// From derivative of Lennard-Jones with sigma and epsilon
// set equal to 1 in natural units!
double rSqd_inv7
= 1.0 / (dist * dist * dist * dist * dist * dist * dist);
double rSqd_inv4 = rSqd_inv7 * dist * dist * dist;
f = 24 * (2 * rSqd_inv7 - rSqd_inv4);
double distSqd = dist * dist;
double rSqd_inv4 = 1.0 / (distSqd * distSqd);
double rSqd_inv7 = rSqd_inv4 / (distSqd * dist);
double f = 24.0 * (2.0 * rSqd_inv7 - rSqd_inv4);
// from F = ma, where m = 1 in natural units!
for (k = 0; k < 3; k++) {
tmp = posItoJ[k] * f;
for (int k = 0; k < 3; k++) {
double tmp = posItoJ[k] * f;
a[i][k] += tmp;
a[j][k] -= tmp;
}
@ -599,8 +585,7 @@ computeAccelerations () {
}
// From derivative of Lennard-Jones with sigma and epsilon
// set equal to 1 in natural units!
double rSqd_inv7
= 1.0 / (rSqd * rSqd * rSqd * rSqd * rSqd * rSqd * rSqd);
double rSqd_inv7 = 1.0 / (rSqd * rSqd * rSqd * rSqd * rSqd * rSqd * rSqd);
double rSqd_inv4 = rSqd_inv7 * rSqd * rSqd * rSqd;
f = 24 * (2 * rSqd_inv7 - rSqd_inv4);
@ -648,16 +633,14 @@ VelocityVerlet (double dt, int iter, double *PE, FILE *fp) {
for (i = 0; i < N; i++) {
for (j = 0; j < 3; j++) {
if (r[i][j] < 0.) {
v[i][j] *= -1.; //- elastic walls
psum
+= 2 * m * fabs (v[i][j]) / dt; // contribution to pressure
// from "left" walls
v[i][j] *= -1.; //- elastic walls
psum += 2 * m * fabs (v[i][j]) / dt; // contribution to pressure
// from "left" walls
}
if (r[i][j] >= L) {
v[i][j] *= -1.; //- elastic walls
psum
+= 2 * m * fabs (v[i][j]) / dt; // contribution to pressure
// from "right" walls
v[i][j] *= -1.; //- elastic walls
psum += 2 * m * fabs (v[i][j]) / dt; // contribution to pressure
// from "right" walls
}
}
}