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Abstract— The virtual simulation of physics can
often times be a time-consuming, resource-heavy pro-
cedure. In this paper, we apply several optimization
techniques in order to enhance the performance of
a molecular dynamics simulation, showcasing the ad-
vantages of their use and the results obtained.

Index terms—optimization, programming,
strenght-reduction, loop-invariant code motion, mole-
cular dynamics

I. Introduction

In some scientific fields, the simulation of entities’ behav-
iours is useful since it provides researchers a visual resource
which they may control, facilitating their task of correlat-
ing input data and effects produced. Moreover, the more
complex such simulations progressively become, the more
resource-costly and time-intensive they are potentially ren-
dered. This way, it is crucial that their development is over
viewed under a resource-aware lens. The application of op-
timization techniques proposes the preservation of essential
code while making use of more efficient instructions, mini-
mizing the strain on available resources.

A. Paper overview

In this paper we propose an alternate version of the c pro-
gram provided within the course of Computação Paralela,
taught at University of Minho, which represents a molecular
dynamic’s simulation of Argon atoms.

The original code is part of FoleyLab/MolecularDy-
namics: Simple Molecular Dynamics, which introduces a
simulation of particle movements over time by calculat-
ing the force, accelaration and position of the atoms. The
calculations are based on the classical understanding of me-
chanics and Newton’s laws of movemement, in order to
compute thermodynamic properties of materials.

The optimized version of the code we present aims to
minimize the time and resources consumed in the rendering
of this aforementioned simulation. Furthermore, the tech-
niques applied are presented in the following sections of this
paper, alongside an explanation on how they better its per-
formance.

II. Performance before optimizing code

Before starting to optimize our code, we need to first have
a baseline of how the code runs without any optimizations.

A. Baseline compiler flags

For our baseline run we used no compiler optimization
flags (as provided by the professors).
 Performance counter stats for 'MD-original.exe':

 1,243,860,205,351      inst_retired.any
                        # 0.65 CPI
   812,320,853,369      cycles

     279.583571300 seconds time elapsed

As you can see, the unoptimized code runs in just under 5
minutes with a CPI of 0.65.

III. Compiler flags

This obviously isn’t optimal, so we applied the following
optimization flags:
-march=native -mtune=native -mavx -O2 -ftree-
vectorize

These flags tell the compiler to try to vectorize the code and
optimize according to the available CPU’s architecture and
capabilities.

Using the above compiler flags, we reduced the original
code to 3.5 minutes.
 Performance counter stats for 'MD-original.exe':

   986,829,986,961      inst_retired.any
                        # 0.66 CPI
   654,476,484,890      cycles

     215.458661315 seconds time elapsed

IV. Optimization techniques

Now that we had chosen compiler flags that make sense to
our program, we started optimizing the code itself. We used
gprof, perf and valgrind to see where the hotspots of our code
were, and found out that more than 99% of the execution
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time of our code was in the “Potential” and “computeAccel-
erations” functions.

A. Minimizing Repetitive Calculations

In the original code, separate loops for potential en-
ergy and particle acceleration used common variables,
causing computational overhead. To improve efficiency,
we consolidated these calculations into a single function,
“PotentialAndAcceleration,” reusing intermediate results.
Additionally, we optimized loop iterations to avoid redun-
dant potential calculations for both directions between
particles, boosting performance.
for i: 0 -> N
  for j: 0 -> N
    //Perform calculations

To the more efficient form:
for i: 0 -> N-1
  for j: i+1 -> N
    //Perform calculations

we have made it so that j is always in front of i, reducing the
number of iterations from

𝑁 ∗ 𝑁 (1)
to the much smaller:

𝑁 ∗ (𝑁 − 1)
2

(2)

Then the function only does calculations between points
once for each pair of points, and adds the value doubled to
out total potential.

Additionally, this modification allowed us to eliminate the
need for a check to verify if “i” and “j” are the same since
they were now guaranteed to be distinct. This streamlining
completely removes N*N branch predictions and further
contributes to a reduction in the number of instructions and
branch misses.

To enhance efficiency even further and reduce redundant
memory accesses and dependencies, we have reorganized
the code. Specifically, we moved the sections of code that
depend solely on the “i” variable outside the “j” loop. This
modification prevents the need to fetch these values during
each iteration of “j” since they remain constant until the
next iteration of the “i” loop. This optimization minimizes
unnecessary data retrieval.

B. Removing pow, sqrt, and Reducing Arithmetic Operations

Since the pow function is more expensive than manually
multiplying, we decided to turn all calls to that function
into a series of multiplications. Furthermore, we decided to
simplify the expressions to minimize the ammount of mul-
tiplications and divisions. Square roots can also be removed
since they are canceled by each other (The value inside is
absolute).

Starting with this:

(
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√
𝑟2
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6

(3)

Distributing the outer powers we can get rid of the square
roots:

𝜎12

𝑟6
−
𝜎6

𝑟6
(4)

Expanding powers:
𝜎 ∗ 𝜎 ∗ …
𝑟 ∗ 𝑟 ∗ …

−
𝜎 ∗ 𝜎 ∗ …
𝑟 ∗ 𝑟 ∗ … (5)

Then, we simplify the multiplications down by using inter-
midiate variables:

quot =
𝜎 ∗ 𝜎
r2 (6)

term2 = quot ∗ quot ∗ quot (7)
finalValue = term2 ∗ (term2 − 1.) (8)

Now we only have 4 multiplications and one division.
We then apply this same principle to the other arithmetic

heavy areas of our code.

V. Results

After all these changes, and using the previoulsy men-
tioned gcc flags, this was our best run.
 Performance counter stats for '/home/pg53595/MDS/
MD.exe':

    19,357,701,649      inst_retired.any
                        #  0.7 CPI
    14,293,931,277      cycles

       4.471249537 seconds time elapsed

We reduced the number of instructions by more than 6000%
and our number of cycles by a little over 5500%.

The time to run our program went down by 6500% from
around 5 minutes to just under 4.5 seconds.

VI. Conclusion

Our study focused on optimizing resource-intensive mol-
ecular dynamics (MD) simulations. By employing advanced
optimization techniques, we significantly enhanced our MD
simulation code’s efficiency. Initially, compiler optimiza-
tion flags improved performance. Subsequent refinements,
including the elimination of redundant calculations and
simplification of arithmetic operations, drastically reduced
instructions and cycles. This led to an impressive 6500%
decrease in execution time, with instructions and cycles re-
duced by over 6000% and 5500%, respectively. Our research
highlights the vital role of code optimization in physics sim-
ulations for more resource-aware scientific research.
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