Vectorising Molecular Dynamics (MD) Simulation

Afonso Franco
Universidade do Minho
Braga, Portugal
pg53595@alunos.uminho.pt

Abstract— The virtual simulation of physics can of-
ten times be a time-consuming, resource-heavy pro-
cedure. In this paper, we utilize AVX instructions in
order to vectorize a molecular dynamics simulation,
evaluating the quality of the results obtained.

Index terms—optimization, programming,
strenght-reduction, loop-invariant code motion, mole-
cular dynamics

I. INTRODUCTION

The journey of our project in the realm of computational
simulations has reached its pivotal Phase 3. This phase rep-
resents the culmination of our collective efforts and the ap-
plication of advanced computational techniques to enhance
the efficiency and performance of our simulations. The pri-
mary objective of Phase 3 is to further improve the efficiency
of our code.

Building on the groundwork laid in the previous phases,
where we focused on optimizing and parallelizing the code,
Phase 3 delves into the realm of further optimizing compu-
tational algorithms. Our goal is to leverage modern process-
ing capabilities to handle complex simulations more effec-
tively and efficiently. This involves a strategic re-evaluation
and restructuring of our computational approach, aiming
for a more streamlined and performance-oriented design.

Throughout this phase, we are committed to investigat-
ing the impact of these enhancements on the overall perfor-
mance of our simulations. The report will provide insights
into the methodologies we adopted, the challenges we faced,
and the results we achieved.

Alice Teixeira
Universidade do Minho
Braga, Portugal
pg52670@alunos.uminho.pt

II. PREVIOUS WORK

A. Phase 1

In the first phase of this project , we seeked to optimize
the single threaded MDS code.

Before optimization, the code’s performance was mea-
sured using various compiler flags, resulting in a significant
reduction in execution time. The optimization techniques
used in the paper are described in detail, focusing on mini-
mizing repetitive calculations and reducing arithmetic oper-
ations, such as replacing expensive functions like ‘pow’ and
‘sqrt’ with more efficient operations.

The results of the optimizations are presented, showing
a remarkable improvement in performance, with a 6500%
decrease in execution time and significant reductions in in-
structions and cycles.

B. Phase2

Before parallelization, the paper establishes a baseline for
the code’s performance, which takes 28.9 seconds for a sim-
ulation with 5000 particles. Various profiling tools are used
to identify code hotspots.

The paper then discusses the implementation of paral-
lelization using OpenMP, specifically focusing on optimiz-
ing the “PotentialAndAcceleration” function. Theoretical
speedup calculations based on Amdahl’s law are presented,
showing that the ideal speedup should be directly propor-
tional to the number of threads used, up to a maximum of
40x.

Practical results obtained by running the parallelized code
with varying thread counts are presented in a table and
graph. The analysis shows that the realistic speedup stabi-
lizes after 24 threads, indicating memory bandwidth limita-
tions as the primary factor. The paper concludes that while
parallelization significantly improves efficiency, memory
bandwidth constraints must be considered when imple-
menting parallel computing solutions.

In summary, the paper successfully parallelizes the mol-
ecular dynamics simulation, achieving substantial speedup.
However, it also highlights the importance of addressing
memory bandwidth limitations when optimizing resource-
intensive scientific simulations through parallelization.

mailto:pg53595@alunos.uminho.pt
mailto:pg52670@alunos.uminho.pt

III. ATTEMPT AT CUDA IMPLEMENTATION

This chapter addresses our efforts to implement the mol-
ecular dynamics simulation using CUDA, NVIDIA’s paral-
lel computing platform. The primary motivation for this ap-
proach was to leverage GPU computing for enhanced com-
putational performance.

The initial phase of the CUDA implementation involved
translating key computational routines into CUDA kernels,
suitable for execution on NVIDIA GPUs. This process was
technically challenging, given the complexity of parallel pro-
gramming and the specific requirements of GPU architec-
tures. However, the initial implementation was successful in
terms of execution.

Bellow we will talk about the different aproaches/ideas
we had while trying to implement this simulation in CUDA
efficiently.

A. Block’s shared memory

An approach we contemplated in our CUDA implemen-
tation was the use of shared memory within each block to
cache the acceleration values. Shared memory in CUDA is a
faster type of memory accessible by all threads in a block and
offers an efficient way to share data between these threads.
The idea was to use this shared memory to temporarily store
and accumulate the acceleration values for particles being
processed by a block.

The potential benefit of this approach was the reduction
in global memory accesses, a common bottleneck in GPU
computing. By caching acceleration values in the faster
shared memory, we could potentially enhance the perfor-
mance of our simulation, especially considering the fre-
quent read and write operations associated with updating
particle accelerations.

However, a significant limitation of this approach was
identified: the particles corresponding to indices i and j in
the force computation loop could reside in different blocks.
In such scenarios, the acceleration data needed for a parti-
cle in one block could be present in the shared memory of
another block, making it inaccessible. This limitation meant
that caching in shared memory would not always be effec-
tive.

While in many cases particles might be processed within
the same block, ensuring efficient use of shared memory, the
inability to guarantee this for all particle pairs reduced the
overall effectiveness of this strategy.

B. Changing the j loop

Another approach was one that involved altering the it-
eration pattern in the ‘j’ loop of the force calculation. Tradi-
tionally, in a CPU-based approach, the j’ loop runs from (i +
1) to N, ensuring each interaction is computed once. How-

ever, in our CUDA implementation, we modified this loop
to iterate from O to N.

This change in iteration pattern resulted in N squared iter-
ations, significantly increasing the computational workload.
However, it also allowed us to circumvent the challenge of
concurrent write operations to the acceleration array, a, at
the j index. In molecular dynamics simulations, the force
(and hence acceleration) between two particles is equal and
opposite. This principle was utilized in our modified ap-
proach.

To account for this, we implemented a conditional oper-
ation within the loop: if j was less than i, the acceleration
would be subtracted, while if j was greater than i, it would
be added. This strategy aimed to ensure that when the roles
of i and j were reversed in different threads, the correct cu-
mulative acceleration would be applied to each particle.

This approach, though conceptually sound in addressing
the issues of parallelism in CUDA, led to an increased num-
ber of computations. Every particle interaction was essen-
tially computed twice, which is a deviation from the more
efficient half-matrix computation in traditional molecular
dynamics simulations. The rationale behind this approach
was to simplify the parallel computation model and avoid
race conditions in memory writes, which are a common
challenge in CUDA programming when dealing with shared
data structures.

This subsection of our CUDA implementation journey
provides an insight into the challenges and trade-offs en-
countered when adapting algorithms for parallel execution
in GPU environments. The goal was to harness the parallel
processing power of GPUs while ensuring the integrity and
correctness of the simulation’s output.

C. Conclusion on CUDA

Subsequent testing revealed discrepancies in the simula-
tion results produced by the CUDA-based version when
compared to those obtained from the CPU-based version.
The inconsistency in the output values necessitated a thor-
ough investigation. Despite extensive debugging and analy-
sis, the precise cause of these discrepancies remained unre-
solved. Factors such as parallel execution anomalies, mem-
ory access patterns, and synchronization issues within the
GPU architecture were considered, but a conclusive solution
was not attained.

Given the critical importance of accuracy in simulation
results and the constraints of the project timeline, the deci-
sion was made to discontinue the CUDA implementation.
This decision was guided by the necessity for reliable and
accurate simulation outcomes over exploratory implemen-
tation. The experience provided insights into the intricacies
of GPU-based computing and highlighted the challenges as-

sociated with adapting complex simulations to parallel com-
puting environments.

Bellow is the final CUDA code that we developed. This
version of the code is just a Proof of concept and doesn’t ad-
dress data races on the a array with the block shared mem-
ory (which would then be reduced in the CPU part of the
code into a single array).

double PotentialAndAcceleration(double dt) {
double * , * , * -

double =0.0;

((void**)& N * 3
((void**)& B * 3 %
((voidr*)&

sizeof(double));
sizeof(double));
* sizeof(double));

(, ry N *x 3 % sizeof(double),);
(, 0, N * sizeof(double),);

(, 0, * 3 * sizeof(double));

int

= 256;
int = (N +

-1/

<<< , >>>(

(a, N * 3 * sizeof(double),)s
(&Pot, , sizeof(double),)5

for (int = 0; < N; i++) {
+= [i];

}

return *

Figure 1: The function that launches the CUDA Kernel

globz void computeAccelerationsAndPotentialKernel(double * , double * , double

* , double , double
int 1 = of3 WX+
F(i<N-1){
double =0.0, =0.0, =0.0
double rI[3] = { [t * 3], [AE3E 51 [1 %3+ 2]}
double =0.0;
for (int j = 1+ 1; j < Nj j++) {
double H
double [31;
double =0.0;
for (int k = 0; k < 3; k++) {
double = rI[k] [*3+K]
[k] = H
4= *
}
double = 3 W
double = w3 b H
double = (48.0 - (24.0 *)) /
double = [0] * f;

double

= * (2 - 1.0);

Figure 2: This is one of the versions of the CUDA Kernel
code

IV. SIMD

Recognizing the challenges and inaccuracies encountered
with the CUDA-based implementations, we resolved to con-
centrate on optimizing our code using CPU-based vectoriza-
tion techniques.

The final approach involved refining our algorithm to bet-
ter leverage the capabilities of modern CPUs, specifically
focusing on manual vectorization using Advanced Vector
Extensions (AVX). This method allowed us to process mul-
tiple data points simultaneously, significantly enhancing the
computational efficiency while maintaining the integrity of
the simulation outcomes. By prioritizing reliability and pre-
cision, we aimed to achieve a balance between computa-
tional performance and the accuracy of our simulation re-
sults.

A. Implementation

In the final implementation phase, our focus shifted to-
wards leveraging CPU-based vectorization. This involved a
series of modifications to the existing simulation code to op-
timize it for SIMD processing.

One of the key changes was the restructuring of the data
arrays. The original code utilized multidimensional arrays to
represent particle positions and accelerations. In the revised
approach, these were transformed into separate one-dimen-
sional arrays - X, ry, 1z for positions, and ax, ay, az for accel-
erations. This change enhanced data locality and alignment,
crucial for efficient SIMD processing.

The core computational routines of the simulation, par-
ticularly those involved in calculating particle interactions,
were then adapted to use AVX instructions. Functions like
mm256_load_pd and mm256_store_pd were employed to
load and store data in 256-bit wide registers, allowing op-
erations on four double-precision elements simultaneously.
Computational operations, such as calculating distances
and forces between particles, were implemented using AVX
functions like mm256_add_pd and mm256_mul_pd, which
perform element-wise addition and multiplication, respec-
tively.

These modifications resulted in a significant enhance-
ment in the computational efficiency of the simulation. By
processing multiple data points in parallel, the execution
time was considerably reduced, while maintaining the accu-
racy and integrity of the simulation results. This successful
implementation of CPU-based vectorization demonstrates
the potential of SIMD processing in optimizing computa-
tional tasks in scientific simulations.

V. PERFORMANCE SCALING DATA

The table below provides a concise summary of the exe-
cution times observed for different numbers of threads, fo-
cusing solely on the ‘real’ time, which represents the total
elapsed time.

Threads | Time (s)
1 16.298
2 12.162
4 7.174

10 3.150
12 2.667
14 2.290
16 2.023
18 1.811
20 1.702
22 2.061
26 1.566
28 1.485
32 1.392
34 1.419
38 1.373

And bellow is a section of the graph of execution time to
number of threads graph.

Green represents the vectorized code’s time, and red rep-
resents phase 2’s code.

Green represents the

Vectorized vs Non-Vectorized time

12 4

810121416182022242628303234 363840
Threads

VI. ANALYSING RESULTS

The performance improvement in Phase 3, which in-
corporated CPU-based vectorization using Advanced Vec-
tor Extensions (AVX) alongside OpenMP, was remarkable
compared to the non-vectorized OpenMP implementation
in Phase 2. The execution times in Phase 3 were signifi-
cantly reduced, about half of what was observed in Phase
2. This demonstrates the substantial impact of SIMD (Sin-
gle Instruction, Multiple Data) operations when integrated
into parallelized computational tasks. The combination of
OpenMP for threading and AVX for vectorization effectively
harnessed the CPU’s capabilities, leading to more efficient
processing and quicker execution times, particularly benefi-
cial for the complex calculations involved in molecular dy-
namics simulations.

In the detailed analysis of the execution times across vary-
ing thread counts, we observed a plateau in performance im-
provements beyond 28 threads. While increasing the num-
ber of threads substantially reduced execution times ini-
tially, the benefits diminished after crossing this 28-thread
mark. This observation is indicative of the limitations im-
posed by factors such as the CPU’s memory bandwidth and
architectural constraints, which set a practical upper limit to
the efficiency gains from parallelization. The use of OpenMP
in conjunction with SIMD vectorization in Phase 3 thus
emerged as a highly effective approach, maximizing CPU
computation efficiency up to this point of optimal thread
count. This strategic combination of threading and data-
level parallelism proved to be an essential factor in achiev-
ing the enhanced performance seen in the vectorized imple-
mentation of Phase 3.

1) Comparing to theoretical performance gain:

Understanding the theoretical versus actual performance
improvements in our AVX vectorization implementation,
which processes four particles at a time, provides valuable
insights into the practical application of SIMD operations in
molecular dynamics simulations.

Theoretically, the capability of AVX to handle four parti-
cles simultaneously should lead to a substantial increase in
computational throughput. Ideally, this would mean a four-
fold improvement in processing speed compared to handling
a single particle at a time. This theoretical efficiency gain
assumes optimal conditions where the CPU can seamlessly
parallelize these operations without significant overhead or
constraints.

However, in our practical results, the performance en-
hancement, while substantial, did not fully match the the-
oretical quadrupling of speed. This divergence can be at-
tributed to various real-world factors. For instance, the ef-
ficiency of memory access, the effectiveness of CPU cache
utilization, and the overhead associated with orchestrating

parallel operations can all impact the performance gains
from SIMD operations. Additionally, parts of the simulation
that remain unvectorized contribute to the overall execution
time, thereby reducing the relative impact of the vectorized
sections.

Despite these considerations, the implementation of AVX
to process four particles at a time demonstrated a signifi-
cant boost in performance, affirming the value of SIMD op-
erations in computational physics. This practical experience
underscores that while theoretical models provide an upper
limit of expected performance, actual results may vary due
to a range of systemic and architectural factors. Nonethe-
less, the approach validates the effectiveness of vectorization
in enhancing computational efficiency in scientific simula-
tions.

VII. CONCLUSION

In conclusion, this paper documents the journey of opti-
mizing and parallelizing a molecular dynamics (MD) simu-
lation, with a particular focus on the utilization of Advanced
Vector Extensions (AVX) for CPU-based vectorization. The
project progressed through various phases, from initial code
optimization and parallelization using OpenMP to an at-
tempt at implementing CUDA-based GPU acceleration.

The key findings and takeaways from our project can be
summarized as follows:

A. Optimization and Parallelization:

In Phase 1, we successfully optimized the single-threaded
MD simulation code, achieving a remarkable reduction in
execution time through various optimization techniques.
Phase 2 extended these improvements by parallelizing the
code using OpenMP, demonstrating substantial speedup
while highlighting memory bandwidth limitations.

B. CUDA Implementation:

Our attempt to implement MD simulation on CUDA
GPUs presented challenges related to memory access pat-
terns and synchronization issues, ultimately leading to dis-
crepancies in simulation results. As a result, we decided to
discontinue the CUDA implementation in favor of accuracy
and reliability.

C. CPU-Based Vectorization with AVX:

Phase 3 marked the implementation of CPU-based vector-
ization using AVX instructions. This approach significantly
improved computational efficiency by processing multiple
data points simultaneously. The restructuring of data arrays
and the use of AVX instructions led to a notable reduction
in execution times.

D. Performance Scaling:

The performance scaling analysis revealed that the com-
bination of OpenMP threading and AVX vectorization was
highly effective, with performance improvements observed
up to a certain thread count limit. Beyond this limit, practi-
cal constraints such as CPU memory bandwidth and archi-
tecture limited further efficiency gains.

E. Practical vs. Theoretical Performance:

While the theoretical potential for AVX vectorization to
quadruple processing speed was not fully realized in prac-
tice due to various real-world factors, the implementation
demonstrated a substantial performance boost. This under-
scores the practical value of SIMD operations in scientific
simulations.

In summary, this project showcases the significance of ad-
vanced computational techniques in optimizing and paral-
lelizing scientific simulations. The integration of AVX vec-
torization into our MD simulation code exemplifies how
modern processing capabilities can be harnessed to enhance
computational efficiency. Furthermore, it emphasizes the
importance of balancing theoretical performance expecta-
tions with real-world limitations and the need for accuracy
and reliability in scientific simulations.

Future work in this area could explore hybrid approaches
that combine CPU-based vectorization with GPU accelera-
tion to further improve the efficiency of molecular dynamics
simulations. Additionally, ongoing advancements in hard-
ware and software technologies may offer new opportunities
for optimizing and parallelizing computational physics sim-
ulations, paving the way for even more efficient and accurate
scientific research in the future.

	Introduction
	Previous work
	Phase 1
	Phase 2

	Attempt at CUDA Implementation
	Blocks shared memory
	Changing the j loop
	Conclusion on CUDA

	SIMD
	Implementation

	Performance scaling data
	Analysing results
	Comparing to theoretical performance gain

	Conclusion
	Optimization and Parallelization:
	CUDA Implementation:
	CPU-Based Vectorization with AVX:
	Performance Scaling:
	Practical vs. Theoretical Performance:

